Bacteriological Studies on *Flavobacterium columnare* in Fish

I.M. Eid *, M.E. Abou ELAtta **, N.H. Eidaroos *, N.I. Farg Allah

*Bacteriology, Immunology and Mycology Department, Fac. Vet. Med. Suez Canal University. ** Central Laboratory for Aquaculture Research. Abbassa, Abou Hammad, Sharkia

Abstract

Columnaris is one of the oldest known fish diseases caused by *Flavobacterium columnare*. The wide spreading of the causative agent in freshwater environments and the susceptibility of fish to be attacked by it after mechanical and/or environmental factors makes *F. columnare* among the most prevalent pathogens in cultured, ornamental, and wild fish populations. One hundred fishes of tilapia (*Oreochromis niloticus*) were collected randomly from ponds of Central Laboratory for Aquaculture Research of Abbassa, Abou Hammad, Sharkia, Egypt for *Flavobacterium columnare* isolation. *F. columnare* was isolated from (150) out of the (350) examined samples. The bacteriological examination revealed that the prevalence of *F. columnare* was (42.8%) in *Oreochromis niloticus*. The highest prevalence of *F columnare* was in gills (33.3%) followed by skin (30%) then fins (24.6%) and kidney (12%). These isolates were further characterized by PCR that revealed positive result for 16S RNA gene with specific amplicons size 675bp. The result of antimicrobial sensitivity testing of the isolates revealed that doxycycline, erythromycin, tetracycline, trimethoprim, nalidixic acid and streptomycin were the most effective drugs against *F.columnare*.

Introduction

Flavobacterium columnare is thin, Gram-negative, rod-shaped bacteria discreted from the other comparable bacteria in morphology by their distinctive rhizoid pattern of growth on a low nutrient medium, and by their growing ability on media containing neomycin and polymyxin B. Griffin (1992).

Columnaris disease considers the second leading killer of commercially raised channel catfish, Ictalurus punctatus next to enteric septicemia (ES) caused by *Edwardsiella ictaluri*. Durborow et al. (1998)

Columnaris disease or mixed infections of columnaris and ES were listed as the first cause of the greatest economic losses on catfish farms by 70% of farmers from the four leading catfish producing states (USDA, 2003), with losses estimated in the millions of dollars. This study aimed to investigate the propagation of *Flavobacterium columnare* in *Oreochromis*
niloticus, characterize representative F. columnare isolates recovered from Oreochromis niloticus and summarize the resistance pattern of isolated F. columnare against various antibiotics.

Material and Method:
Fish:
Total number of (100) clinically diseased tilapia fish of the genus Oreochromis niloticus were transferred alive in oxygenated plastic containers to the laboratory and subjected to full clinical and postmortem examination.

Bacteriological examination:
Samples were taken under complete aseptic conditions from gills, skin, fins, kidney, liver, spleen and muscle. The samples were inoculated onto Ordal's broth for 28hrs at 37°C then subcultured on Ordal's agar. The obtained pure colonies were identified according to colonial morphology, slide film was stained with gram stain for microscopical examination and description of the shape and arrangement of bacteria was done according to Collins et al; (1989).

Polymerase Chain reaction:
For accurate identification of Flavobacterium columnare universal primers for 16S rRNA gene were used Table (1). DNA extraction had been done by following manufacturer’s instructions of QIAamp DNA mini kit. PCR products were electrophorized using 1% Agarose gel using Gel casting apparatus (Biometra). The gel was photographed by a gel documentation system and the data analyzed through computer software according to Sambrook et al. (1989).

Antimicrobial sensitivity test:
The antimicrobial sensitivity test of F. columnare isolates were performed by disc diffusion test according to Bauer et al. (1966) and interpreted according to NCCLS/CLSI (2007).

Table (1) Oligonucleotide primers sequences:

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence</th>
<th>Amplified product</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>F.COLUMNARE</td>
<td>F: 5'-CAGTGGTGAAATCTGGT-3'</td>
<td>675</td>
<td>Darwish et al., 2004</td>
</tr>
<tr>
<td>16SrRNA</td>
<td>R: 3'-GCTCCTACTTGCAGTAGT-5'</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results and Discussion:
clinical examination of fish:
Naturally infected Oreochromis niloticus were clinically examined and revealed loss of scales with presence of grey-white discoloration on some parts of the head, tail, around the mouth, fins and other areas (Figure 1). In some cases, ulceration, and degeneration of underlying muscle fibers around dorsal fin observed (saddle back lesion) (Figure 2). The gill filaments showed presence of
congestion, necrosis and covered with excessive mucus.

Bacterial isolation and identification:
The present study revealed that *F. columnare* can grow only on the selective media (cytophaga agar media) with addition of antimicrobial agents including polymyxin B and neomycin sulfate in order to inhibit growth of other bacteria. Colonies appeared on selective media as smooth flat golden yellow colonies with circular edges measuring 3-4mm in diameter and adhered to the agar. Microscopically, isolates were gram-negative bacterium, long rods and scattered in arrangement. This result was harmonious with those recorded by Bullock et al., (1986), Griffin (1992) who stated that selective media must be used to isolate *F. columnare* and differentiate it from other yellow pigmented gliding bacteria. They described the colony on solid media as yellow to orang in color, translucent, circular, smooth and shiny with entire edges.

The present investigation revealed that the total prevalence of *F. columnare* among naturally infected *Oreochromis niloticus* was (42.8%) Table(1), this finding was higher than recorded by Elgamal (1995) who recorded that prevalence of *F. columnare* among naturally infected tilapia was (16.6%), also higher than result obtained by Eltalaway (2008) who found that that prevalence of *F. columnare* infection in examined *Clarias guriepinus* was (22.9%) and Kamel (2013) who recorded (4.16%) among infected *Oreochromis niloticus*.

The isolation of *F. columnare* occurred from gill with the highest prevalence (33.3%) followed by skin (30%), tail and fins (24.6%) and kidney (12%) while, there is no isolation found from other internal organs Table (2). This agree with that stated by smith (1982) who mentioned that the gill is the largest tissue for presence of *F. columnare*, Elgamal, (1995) and Eltalaway (2008) who isolated *F. columnare* from skin, gill and kidney.

Genotypic characterization:
The molecular identification of *F. columnare* by PCR produced unique and clear bands corresponded to the 675 base pair (bp) by internal fragments of 16S rRNA gene confirmed without doubt that the isolated strains were *F. columnare* (Figure 3). These results were similar to those was recorded by Darwish et al., (2004).

Antibiotic sensitivity test:
The present findings showed that *F. columnare* strains were sensitive to tetracycline, nalidixic acid, trimethoprim, doxycycline, streptomycin and erythromycin. While moderately sensitive to colistine and kanamycin and highly resistant to neomycin, Table (3). These result is assents with Hesami et al. (2010) who recorded that all strains of *F. columnare* were susceptible to ampicilllin, erythromycin, streptomycin,
tetracycline, trimethoprim-sulphadiazine but displayed acquired resistance to neomycin and polymyxin B. and partially agree with the result recorded by Elgamal (1995) and Varga et al. (2016). On conclusion, this study indicated that F. columnare is one of the most common fish pathogens which cause mortalities and high economic losses. High prevalence of F. columnare among Oreochromis niloticus collected from ponds of Central Laboratory for Aquaculture Research of Abbassa, Abou Hammad, Sharkia, Egypt reaches to (42.8%). The distribution of organism in tissue and organs of infected Oreochromis niloticus were high in gills (33.3%) followed by skin (30%) then fins (24.6%) and kidney (12%). Nalidixic acid, tetracycline, streptomycin, erythromycin, doxycycline and trimethoprim were the most effective drugs against F. columnare.

Table (1): Prevalence of F. columnare in examined Oreochromis niloticus

<table>
<thead>
<tr>
<th>Fish species</th>
<th>Total No</th>
<th>Total samples</th>
<th>Positive growth samples</th>
<th>% of isolation of F. columnare</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oreochromis Niloticus</td>
<td>100</td>
<td>350</td>
<td>150</td>
<td>42.8%</td>
</tr>
</tbody>
</table>

Table (2) Prevalence of F. columnare among various organs of Oreochromis niloticus samples.

| Bacteria | Total No | gill No | gill % | skin No | skin % | Tail & fin No | Tail & fin % | kidney No | kidney % | liver No | liver % | spleen No | spleen % | muscle No | muscle % |
|-----------|----------|---------|--------|---------|--------|---------------|-------------|------------|----------|----------|---------|---------|----------|---------|----------|---------|
| F. Columnare | 150 | 50 | 33.3 | 45 | 30 | 37 | 24.6 | 18 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |

Table (3) Results of antibiotic sensitivity test of isolated bacteria

<table>
<thead>
<tr>
<th>Antibiotic agent</th>
<th>Disc conc (µg)</th>
<th>F. columnare</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Inhibition zone (mm)</td>
</tr>
<tr>
<td>Colistin sulfate</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>10</td>
<td>23</td>
</tr>
<tr>
<td>Kanamycin</td>
<td>30</td>
<td>17</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>15</td>
<td>23</td>
</tr>
<tr>
<td>Neomycin</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>Doxycycline</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Nalidixic acid</td>
<td>30</td>
<td>33</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>30</td>
<td>23</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>1.25</td>
<td>30</td>
</tr>
</tbody>
</table>
Figure (1): *O. niloticus* showed white necrotic tissue, rough scales and scale less area behind the head.

Figure (2): *O. niloticus* showed erosion & ulcer of the back reached to the muscle (saddle back appearance)

![Image: Fish with lesions showing white necrotic tissue and rough scales.]

<table>
<thead>
<tr>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>Neg</th>
<th>Pos</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>675 bp</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure (3): Electrophoretic pattern of 16S r RNA PCR assay of *F. columnare* isolated from fish.

L=ladder
Pos=positive control
Neg=Negative control (saline)
Sample: *F. columnare* isolates from *Oreochromis niloticus* (lanes: 4, 6, 7, 8).

References:

Bullock, G. L., Hsu, T. C., & Shotts Jr, E. B. (1986); Columnaris disease of fishes.

NCCLS/CLSI (National Committee for Clinical Laboratory Standards/Clincal and Laboratory Standards Institute), (2007); CLSI document GP 18- Laboratory design; approved guideline. 2nd ed. Clinical and Laboratory Standards Institute, Wayne (PA); 2007.

Smith, P.D. (1982); Analysis of hyperosmotic and bath methods for fish vaccination: Comparison of uptake of particulate and non-particulate antigens. Developmental and comparative Immunology 2:2333-238.

دراسات بكتريولوجية على الفلافوبكتريم كولمنار في الأسماك

حمزة ابراهيم عيد*, محمد السيدة بالعطا*, ندا حسين عidaros*, نجوى ابراهيم فرج الله
قسم البكتيريا والمناعة والفطريات - كلية الطب البيطري - جامعة قناة السويس
**المعمل المركزي لبحوث الثروة السمكية بالعباسة، محافظة الشرقية

جمعت 100 سمكة (بلطي نيلي) عشوائياً من المزارع التابعة للمعمل المركزي لبحوث الثروة السمكية بالعباسة، محافظة الشرقية لمعرفة مدى تواجد الفلافوبكتريم كولمنار بها. ووضحت الدراسات البكتريولوجية أن نسبة انتشار مرض الكولمنارس في البلطي النيلي كانت (42.8%) وأن أعلى نسبة تواجد كانت في الخاشيم بمعدل 33.3%، تليها الجلد بمعدل 30%، الزعانف 24.2%، الكلى 12%، ونسبة الاختبار المزدوج بالبلمرة المتسلسل وجود الرابط المخصص لبكتريا الفلافوبكتريا كولمنار في سمك البلطي النيلي وذلك عند 175 قاعدة مزدوجة الذي ينفرد بوجود بكتريا الفلافوبكتريا كولمنار وذالك بناء على الجين المخصص لها 16SrRNA. كما وُضّح تأثير الاحذية علاج مرض الكولمنارس من.doxycycline, erythromycin, sulfadimethoxine, nalidixic acid, tetracycline. كما أوضحت نتائج اختبار الحساسية أن مضادات الحيوية الأكثر فاعلية لمقاومة وعلاج مرض الكولمنارس.