Chemical, Microbiological and Enzymatic Evaluation of Mastitic Milk

Department of Food Hygiene and Control, Faculty of Veterinary Medicine
Suez Canal University, Ismailia, Egypt

Abstract
A total of 400 quarter milk samples were collected from 100 dairy animals breaded in three dairy farms in Suez Canal area examined by California Mastitis Test (CMT) and found that 102 samples were positive for subclinical mastitis (SCM). Positive samples microbiologically revealed that the most common bacterial isolates from subclinical mastitis cases were Staphylococcus aureus 92 (90.20%), Staphylococcus epidermidis 18 (17.65%), streptococcus spp. 79 (77.45) and E. coli 35 (34.31%). On the other hand, total yeast and mould count were 74 (72.54). Chemical and enzymatic examinations in positive CMT milk samples revealed that mean level of milk lactose % was 3.16±0.79, while the mean level of milk chloride % was 0.13±0.04 significantly higher in positive CMT milk samples, mean value of LDH and ALP enzyme was 503.52±14.21 IU/ML and 723.77±21.30 IU/ML which significantly higher in positive CMT samples than negative CMT samples. Therefore, our study concluded that milk lactose, chloride and enzymes are considered to be suitable diagnostic methods for diagnosis of SCM in dairy animals.

Key words: Subclinical mastitis, etiology, milk LDH, ALP, lactose, chloride; Staphylococcus aureus, streptococcus spp., E. coli.

Introduction
Milk considered as good supplement of nutrients for human diet. It contains all the food constituents required. Its composition is affected by the breed of animals, species, health of udder, stage of lactation and diseases affected udder (Sharif et al., 2007). Mastitis is an inflammatory change of the mammary gland characterized by an increase in somatic cells in the milk and pathological changes in mammary tissues. (Souto et al., 2010). It is a dangerous disease of dairy animals which is found in clinical and subclinical forms causing great economic losses and of public health concern. (Sharif et al., 2007). Mastitis is the first cause of elevated somatic cell count, so affects both quality and quantity of milk. Elevated milk SCC is associated with changes in protein...
quality, change in fatty acid composition, lactose, and mineral concentration, increased enzymatic activity and PH of rawmilk (Auldist et al., 1996 and Coulon et al., 2002). Bacteria that causing mastitis in cattle are transmitted through raw milk from infected udder and cause disease problems in human, such type of bacteria includes Mycobacterium, Brucella and Staphylococcus and Streptococcus species. (Dagnaw, 2015). Many studies were revealed that some changes detected in enzyme activities due to mastitis (Andrei et al., 2011). Detection of enzyme activity in milk considered as reliable markers for early diagnosis of subclinical mastitis (Babaei et al., 2007; Guhaet al., 2012). Milk enzymes ALP and LDH were markedly increased in mastitis and they considered both as the early indicators of acute mastitis (Larsen et al., 2010).

There for the aim of this study was based on: 1- Detection of subclinical mastitis in dairy animals by using screening test (CMT), 2- Determination of lactose and chloride percent, 3- Determination of lactate dehydrogenase enzyme and alkaline phosphates enzyme, 4- Microbiological analysis of positive CMT samples.

Materials And Methods

1. Animals:
A total of 400 quarter milk samples from 100 dairy animals breaded in three dairy farms at Suez Canal area, Egypt were subjected to this investigation. Animals selection based on the age and stage of lactation.

2. Sampling:
Before milking each udder was washed with water and soap then washed with potassium permanganate 1/1000 solution, dried with clean towel, The teat was disinfected with 70% ethyl alcohol. The first three streams were rejected then 150 ml of milk for each sample were sent aseptically in a sterile screw capped bottles to be examined. Each sample was thoroughly mixed before divided into three subsamples used for screening tests, microbiological and chemical examination.

Equal amount (2ml) of milk and frieso-test reagent were mixed thoroughly in a cup of black plastic paddle and swirl gently of the paddle for 10 seconds. Results were recorded according to the tendency of gel formation and expressed as strong positive (++++), positive (++), weak positive (+) or negative (-).

4. Microbiological examination:
2.1 Preparation of samples for microbiological examination according to APHA (2004): Milk samples were microbiologically examined for Enumeration, Isolation and identification of Staphylococcus spp. according to Deibel and Herrttman (1984) on Baird-Parker agar plates and incubated at 37°C for 48
hours and isolation of *E. coli* was carried out according to APHA (2004) on eosin methylene blue agar (EMB) plates and incubated at 37 °C for 24 hours. Isolation and count of *streptococcus* spp. according to APHA (2004) on asacalinazid agar medium plates and incubated at an inverted position at 36± 1° C for 48 hours and identification of streptococcus species done according to Koneman et al. (1988) and Quinn et al (1994). Total Yeast and mould count was carried using Sabouraud dextrose agar medium according to APHA (2004).

5. Chemical examination:

Results

Table 1: Incidence of subclinical mastitis in examined quarter milk samples according to California mastitis test.

<table>
<thead>
<tr>
<th>NO. of animals</th>
<th>NO. of quarters milk Samples</th>
<th>Positive samples NO.</th>
<th>Positive samples %</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>400</td>
<td>102</td>
<td>25.5</td>
</tr>
</tbody>
</table>

Table 2: Correlation between positive CMT score, % of mastitic milk samples and microbiological results.

<table>
<thead>
<tr>
<th>Positive CMT scores</th>
<th>No. of samples</th>
<th>% of mastitic milk samples</th>
<th>NO. of Microbiological positive samples</th>
<th>Accuracy %</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>38</td>
<td>37.25</td>
<td>38</td>
<td>100%</td>
</tr>
<tr>
<td>++</td>
<td>39</td>
<td>38.24</td>
<td>39</td>
<td>100%</td>
</tr>
<tr>
<td>+++</td>
<td>25</td>
<td>24.51</td>
<td>25</td>
<td>100%</td>
</tr>
<tr>
<td>Total</td>
<td>102</td>
<td>100</td>
<td>102</td>
<td>100%</td>
</tr>
</tbody>
</table>
Table 3: Incidence and count of some microorganisms in examined positive CMT quarter milk samples (n=102).

<table>
<thead>
<tr>
<th>Isolated organism</th>
<th>Incidence</th>
<th>Total count (cfu/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NO</td>
<td>%</td>
</tr>
<tr>
<td>S. aureus</td>
<td>92</td>
<td>90.20</td>
</tr>
<tr>
<td>S. epidermidis</td>
<td>18</td>
<td>17.65</td>
</tr>
<tr>
<td>Strept.spp.</td>
<td>79</td>
<td>77.45</td>
</tr>
<tr>
<td>E.coli</td>
<td>35</td>
<td>34.31</td>
</tr>
<tr>
<td>Total yeast and mold count</td>
<td>74</td>
<td>72.54</td>
</tr>
</tbody>
</table>

Table 4: Statistical analytical results of Milk Chemical and Biochemical parameters values based on CMT in examined quarters’ milk samples (n=400).

<table>
<thead>
<tr>
<th>Biochemical Parameters</th>
<th>CMT positive milk samples(n=102)</th>
<th>CMT negative milk samples(n=298)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>Lactose%</td>
<td>2.23</td>
<td>5.7</td>
</tr>
<tr>
<td>Chloride%</td>
<td>0.07</td>
<td>0.24</td>
</tr>
<tr>
<td>ALK.Ph. Enzyme</td>
<td>276.18</td>
<td>2561</td>
</tr>
<tr>
<td>LDH. Enzyme</td>
<td>165 IU/ML</td>
<td>844 IU/ML</td>
</tr>
</tbody>
</table>

*Significance at P< 0.05. *** Significance at P < 0.001.

Discussion

1- Incidence of subclinical mastitis by California Mastitis Test (CMT).

Results summarized in table (1) revealed that 102 out of 400 examined quarter milk samples (25.5%) were positive for CMT. The obtained result was nearly similar to those obtained by Islam (2011) and Saidi et al. (2013), while relatively higher incidence were obtained by Ayano et al. (2013), Murugaiyahet al. (2014) and Rahmanet al.(2014). Whereas comparatively lower incidence were recorded by Hashemiet al. (2011) and Hussein (2012).California mastitis test generally used as rapid test for detection of sub-clinical mastitis which detects somatic cell nuclear material, depending on a threshold of 300,000 SCC per milliliter (Radostitset al., 2000). Results given in table (2) proved that 100% positive CMT samples in all scores were microbiologically positive. The obtained results clarified a good correlation between CMT in all scores and microbiological results. Lower correlation was reported by Hussein (2012). Nearly similar results were recorded by Saidi et al. (2013) and Sanotharanet al. (2016), they found that 97%, 95% and 93.9% of CMT yielded
bacterial growth, respectively. Inspection of table (2) showed that 38(37.25%), 39(38.24%) and 25(24.51%) of examined samples were positive for CMT scores (+), (++) and (+++) respectively. These results were being disagreed with those obtained by Sabuncu et al. (2013) who reported that 82.58%, 14.83% and 2.58% were positive of CMT score (+), (++) and (+++), respectively. Nearly similar result was reported by Nabih and Abd-El. Rahman (2015), they reported that 16%, 32% and 52% of examined samples were positive for CMT score (+), (++) and (+++), respectively.

2- Microbiological evaluation of positive samples.

It was evident that S. aureus could be isolated from 92 out of 102 (90.2%) of microbiologically positive samples in single and/or mixed infection. Results in table (3) revealed that the total S. aureus count in microbiologically positive mastitis milk samples ranged from 6×10^2 to 5×10^6 with a mean count of 2.8×10^5± 8.7× 10^2 cfu / g. The results indicated that S. aureus was the first major pathogenic organism incriminated in subclinical mastitis and this was potenciated by what had been reported by several authors; (Nagwa et al., 2015; Abdel Tawabet et al.,2016 and Sanotharan et al.,2016). Data tabulated in table (3) revealed that S. epidermidis count in microbiologically positive mastitis milk samples was ranged from 2×10^2 to 1×10^5 with a mean count of 1.2 ×10^4 ±1.7×10^2 cfu / g. S. epidermidis, is often regarded as a culture contaminantbut its importance as a pathogen has been recognized in recent years. S. epidermidis is a common cause of infection indwelling foreign devices, surgical wound and bacteremia in immunocomprised patients (Blum and Rodvold, 1987). Results given in table (3) revealed that the total Streptococcus species count in microbiologically positive mastitis milk samples ranged from 1×10^2 to 2×10^9 with a mean count of 2.6×10^7 ± 1.5 × 10^2 cfu / g. streptococcus spp. classifed to Strep.pyogens was isolated from 44(43.14) where organism was isolated from subclinical mastitis milk samples by many authors with different incidence (Saidi et al., 2013, Murugaiyah et al. 2014 and Mureithi and Njuguna 2016). While Strept.agalactiae was isolated from 30 (29.41%) Nearly similar result was recorded by Ahmed et al. (2008). Higher results were recorded by Plozza et al. (2011) and Ramirez et al. (2014). Lower records were obtained by Ayano et al. (2013), El Sayed et al. (2015) and Sztachanska et al. (2016).E.coli represent the third important causative bacterial agents isolated from examined mastitis milk samples in this work, Inspection of table (3) revealed that the total E.coli count in microbiologically positive mastitis milk samples
ranged between 1×10^2 and 1.3×10^6 with a mean count of $8.4 \times 10^4 \pm 0.53 \times 10^2$ cfu/g. Nearly similar results were reported by Plozza et al. (2011), Hussien (2012) and Abd-Elrahman (2013). Lower findings were recorded by Ali et al. (2015) and Sanothanathan et al., (2016). Higher results were recorded by Ahmed et al. (2008) and Nagwa et al. (2015). Result recorded in table (3) revealed that the total yeast and mould counts of examined samples ranged from 1×10^2 to 1×10^7 with a mean count value of $1.7 \times 10^5 \pm 1 \times 10^2$ cfu/g. Lower results of yeast and mould counts were recorded by Rajeev et al. (2011) and Murugaiyah et al. (2014). On contrary, sporadic incidence of subclinical mastitis due to yeast had been reported by Dudko et al. (2003) and Ebrahim and Nikookhah. (2005).

3- Chemical and enzymatic evaluation of positive CMT quarter milk samples:
Table (4) revealed that lactose content in examined positive CMT quarter milk samples ranged from 2.23 to 5.7% with a mean value of 3.16 ± 0.79, while in negative CMT quarter milk samples was ranged from 3.15 to 6.17 % with mean value of 4.12±0.20. Lactose content showed significant (p<0.05) decreased in positive CMT milk samples(P<0.05), The obtained result, similar to those obtained by Sharif et al. (2007), Hamid et al. (2012) and Nagwa et al. (2015).

Chloride content in examined positive CMT quarter milk samples was ranged from 0.07 to 0.24 with a mean value of 0.13 ± 0.04, while in negative CMT milk samples ranged from 0.03 to 0.10 with a mean value of 0.06±0.001. Results obtained in this work showed that chloride content increased significantly (P≤ 0.05) in positive CMT quarter milk sample. Inspection of table (4) revealed that Alkaline phosphatase enzyme in examined positive CMT quarter milk samples ranged from 276.18 IU/ML to 2561 IU/ML with a mean value of 723.76 ± 21.30. While in negative CMT samples ranged from 81.70 IU/ML to 256.40 IU/ML with a mean value of 186.40±15.60. Also lactate dehydrogenase enzyme content in examined positive CMT quarter milk samples ranged from 165 IU/ML to 844 IU/ML with a mean value of 503.52±14.21, while in negative CMT quarter milk samples ranged from 68.4 to 190.17 with a mean value of 158.7±7.04. The obtained results indicate that Alkaline phosphatase enzyme and lactate dehydrogenase enzyme increased significantly (P≤ 0.001) in positive CMT quarter milk samples. The obtained results were nearly similar to those obtained by Aliaa et al. (2013) and Nagwa et al. (2015). Lower results were reported by Zeinhom et al. (2013)and Nabih & Abd. El Rahman (2015).
Conclusion and Recommendations
The obtained results revealed that CMT and lactose and chloride as well as enzyme evaluation of mastitis milk can be considered as efficient tests for detection of subclinical mastitis in cows and buffaloes. Therefore, in order to minimize the risk of infection of milk and to safeguard consumers, the following suggestions should be applied:
1- The herd should be periodically examined for subclinical mastitis using screening tests and confirmed by detection of enzymes level in milk.
2- Separation of the infected animals from healthy one and milked last or by special precautions and the milk from infected quarter should not be mixed with the bulk milk and discarded.
3- Efficient treatment of infected animals using effective drugs and retest them after suitable time to prove their complete cure.
4- Application of good herd management and strict hygienic measures including:
 a- Functionally adequate milking machine should be used in a correct manner.
 b- Proper hand milking procedures with efficient washing and drying of milker’s hand and udder.
 c- Good cleaned and sanitized milking equipments should be used.
 d- Application of teat dip after milking using a suitable and effective antiseptic solution.
5- Using a suitable scheme for prophylactic treatment of udder during drying period.

References:
Bacteriological and Biochemical Studies on Subclinical Mastitis in Buffaloes. New York Science Journal 2013; 6 (7). Discussion (table 3).

Dudko, P (2003): The microbiological examination of milk samples results conducted in

Elsayed, M. S.; El-Bagoury, A. M. and Dawoud, Mai A. (2015): Phenotypic and genotypic detection of virulence factors of Staphylococcus aureus isolated from clinical and subclinical mastitis in cattle and water buffaloes from different farms of Sadat City in Egypt, Veterinary World 8(9):1051-1058.abstract(4-8)page.

Sanotharan, N., Pagthinathan, M. and Nafees, M.S.M (2016): Prevalence of Bovine Subclinical Mastitis and its Association with...

Souto, LI; Minagawa, CY; Telles, EO; Garbuglio, MA; Amaku, M; Melville, PA; Dias, RA; Sakata, ST and Benites, NR (2010): Correlation between mastitis occurrence and the count of microorganisms in bulk raw milk of bovine dairy herds in four selective culture media. J. Dairy Res., 77: 6370.
