Prevalence Antimicrobial Resistance and Pathogenicity of Enterococcus Spp. Isolated from Ducks

Mohamed S. Al-Gaiar, Mohsen El Dimerdash, Dalia M. Hamed and Mohamed K. Moursi

Abstract:
The present study was undertaken during a period from 2013 to 2015 in different localities at Damietta Governorate to investigate the isolation prevalence of Enterococcus spp., antibacterial resistance patterns and their pathogenicity in Pekin ducks. Clinical cases from 46 duck flocks of different breeds suspected with bacterial infection (26 farms and 20 backyard) were examined for the prevalence, isolation and identification. Enterococcus faecalis. Suspected cases were confirmed after culturing on Bile esculin azid agar, biochemical testing either by conventional and bioMerieuxVitek. Prevalence were (7/26) and (4/20) in duckling farms and backyard respectively. Sensitivity testing of isolated enterococci from duck flocks to antimicrobial agents were tested using the disk diffusion method. Enterococcus faecalis showed multiple drug resistance patterns for different antibiotics, oxytetracycline, chloramphenicol, Erythromycin, Gentamicin, Ciprofloxacin, Neomycin, Kanamycin, Vancomycin, Nalidixic acid, and streptomycin while, susceptible to Ampicillin. Pathogenicity test for isolated Enterococcus fecalis was performed. Inoculated ducks showed mainly, general clinical signs respiratory manifestation, lameness, growth retardation and pathologically airsaculitis, pericarditis, endocarditis, splenomegaly and necrosis of bone extremities (FHN) differ in severity according to the route of inoculation intravenous, intrathoracic, intranasal and orally respectively.

Key word: Enterococcus, bacterial diseases, Duck diseases, arthritis in ducks, pathogenicity test in duck.

Introduction
Enterococcus spp. in poultry can result in distinct clinical forms of disease, acute and subacute/chronic. In the acute form clinical signs are related to septicemia and include depression, lethargy, pale combs and wattles, ruffled feathers, diarrhea, mild head tremors and often, only dead birds are found. In the subacute/chronic form, depression, loss of body weight, lameness and head tremors may be observed. Clinically affected birds eventually die if not treated Joan and McNamee (2002). E. faecalis,
E. faecium, Enterococcus durans, Enterococcus cecorum and Enterococcus hirae have occasionally been associated with a variety of pathologies including endocarditis, septicaemia, central nervous disorders and lameness Wood et al. (2002). Enterococcus spp (faecalis, durans, hirae), were isolated by rate 52.5% from birds with the ascites syndrome from different farms at Ismailia province Mohamed and Sohair (2008). The most frequent resistance properties were resistances to tetracycline (75.6%), erythromycin (56.8%) and ciprofloxacin (41.9%). No strains resistant to vancomycin and linezolid were detected (Ruzauskase et al., 2009). The experimental infection of Enterococcus faecalis causes arthritis at the rate of 100% in chickens (Ciftci 2004). High doses (1.5 × 10⁹ CFU/bird) of Enterococcus Cecorum given intravenously and into air sac to 12-day-old ducks led to 100%, 67% mortality within 2-4 days respectively (Metzner et al., 2010).

Material and Methods

Birds:
Twenty six, duck from different farms, ages and breeds (Pekin, Muscovy and Mallard), suffering from high morbidity and increased mortality besides Twenty backyard cases, were examined during a period extended from 2013 to 2015 in different localities of Damietta Governorate. Complete clinical signs and postmortem examination were performed

Samples:
A total of 213 samples (169 from duck farms and 44 from the backyard) as shown in tables (1), were collected from internal organs (liver, heart, spleen, brain) and from bone marrow, synovial fluids of arthritic joints and hydro-pericardial fluids of diseased and freshly dead ducks. Then samples were transferred into nutrient broth and incubated at 37C for 24 hr and were subcultured on Bile esculinazidagar. The black colored colonies observed were subjected to morphological and biochemical examination as described by Facklam and Sahm (1995)

Isolation and species identification of enterococci
Isolated suspected colonies of Enterococcus spp. derived from visceral organs (liver, heart, spleen, hydropericardial fluids, and arthritic joints were transferred to a selective medium containing bile, esculin and azide(Biokar Diagnostic) and to blood agar. Samples were incubated at (37±1) °C for (48± 2) h. All isolated species were Gram-positive and hemolytic negative cocci. Based on native microscopical preparation (conformation, motility, cleanness of cultures), negative catalase and positive PYR test (PYRA test, Lachema, Brno, Czech Republic) and biochemical identification by (bio Merieux Vitek).

Pathogenicity test.
Enterococcus faecalis challenge isolate was isolated from duck flocks with severe clinical disease positive isolates were identified to the species level by biochemical tests and the Automated Microbial Identification system (bioMerieuxVitek,).

Inoculation of Pekin ducks. Done after Jung et al 2013 orally, intra nasally, intra thoracic and intravenously respectively.

Experimental infection. A total fifty pekin day old duck randomly divided into five separately housed groups 10 each. At 7 days of age, control group were inoculated intravenously with sterile physiological saline solution. The other groups (2-5) were inoculated orally, intra nasal, intra thoracic and intra venous with 0.5 ml Enterococcus faecalis suspension containing 2× 10⁹ colony-forming units (CFU) per bird. All ducks were monitored daily for clinical signs throughout the whole experimental period (21 day). All clinical signs and pathological changes were recorded and mortality was documented. Birds with severe signs such as apathy, reduced mobility or central nervous signs, which prevented the uptake of food and water, were euthanized. At days 7, 14 and 21 post infection (p.i.). For necropsy and recording pathological changes.

Re-isolation of Enterococcus faecalis.

For re-isolation, samples were cultured on Columbia sheep blood agar and Columbia CNA agar (Oxoid GmbH) for 24 h at 37°C under microaerophilic conditions. Colonies showing typical morphology of Enterococci including grey colour and slight α-haemolysis were subcultured and confirmed to be Enterococcus faecalis by positive Gram staining, negative catalase reaction, no growth at 45°C and 6.5% NaCl concentration, and by the commercial microorganism identification system.

<table>
<thead>
<tr>
<th>Locality</th>
<th>Breed</th>
<th>Flock no.</th>
<th>Average age in days</th>
<th>Flock capacity</th>
<th>Type of Specimen</th>
<th>No. of samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Damietta</td>
<td>Muscovy, Pekin</td>
<td>20</td>
<td>3-60</td>
<td>2239</td>
<td>Live, freshly dead</td>
<td>60</td>
</tr>
<tr>
<td>zElzarka</td>
<td>Muscovy, Pekin, Muller</td>
<td>9</td>
<td>5-65</td>
<td>10800</td>
<td>Live Freshly dead</td>
<td>58</td>
</tr>
<tr>
<td>Kafersaad</td>
<td>Muscovy, Pekin</td>
<td>12</td>
<td>6-77</td>
<td>15452</td>
<td>Live Freshly dead</td>
<td>71</td>
</tr>
<tr>
<td>Faraskour</td>
<td>Muscovy, Pekin</td>
<td>5</td>
<td>11-60</td>
<td>2035</td>
<td>Live Freshly dead</td>
<td>24</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>30526</td>
<td></td>
<td>213</td>
</tr>
</tbody>
</table>
Results
The diseased ducks showed, general signs of illness in the form of depression, anorexia, reduced water and feed consumption, ruffled feathers and body weight loss, inactivity and diarrhea. Others showed nervous manifestations, lameness and inability to stand. Sudden death of some birds were recorded. Postmortem findings of the examined duck revealed general congestion in all internal organs with signs of septicemia, hepatosplenomegaly, airsacculitis, pericarditis, perihepatitis, ascites, enteritis, hydropericardium, bone abnormalities, arthritis and brain congestion.

Prevalence of Enterococcus faecalis isolation from duck flocks
Enterococcus faecalis was isolated from duckling flocks with different rearing systems by 7/9 and 4/11 from farms and backyard respectively. While prevalence according to breed were illustrated in table (3).

Results of pathogenesis test
Clinical signs and mortality:
All ducks of the intravenous and intra thoracic inoculated groups showed severe clinical signs, including apathy, reduced mobility, diarrhoea and central nervous signs such as head tremor and opisthotonus at days 1 and 2 (p.i). Four birds 4/10 (40%) within the first 2 days (p.i).
A week later, all clinical signs were extended in addition to arthritis, respiratory manifestations (dyspnea, lacrimation, abnormal respiratory sound) and abnormal characteristic gait (lameness) with twisted legs, drop in feed consumption, the ducks became very weak and cachexic unable to stand and lay down all the time with severe retardation of growth. Bilateral swelling of femoro-tibial and tibio-metatarsal joints were characteristically observed. The mortality rate were (30%) in intravenous in intra thoracic inoculation. Oral and intra-nasal inoculated ducklings showed mild clinical signs of illness, decrease food intake, relative increase in water intake and diarrhea with decrease activity at 3rd day post inoculation. At 4th day post inoculation in orally infected ducks showed nervous signs such as head tremor and opisthotonus before death. A week later, respiratory manifestations developed and growth retardation were detected.
But intranasal severely affected than orally inoculated birds. Mortality rate in both inoculated groups was 20% along experimental period.

Gross pathology: Ducks that died showed septicemia including, severe congestion in all internal organs, muscles, ribs, brain, intestine, airsacculitis with the presence of hemorrhagic streaks on muscles. Intravenous and intrathoracic inoculated groups showed, enlarged pale liver with areas of congestions, peri hepatitis, pericarditis, enteritis, large
lobulated kidney, enlarged spleen, air sacculitis, endocarditis but in severe stage, presence of cecal core in intravenous inoculated birds, pneumonia, arthritis (amyloid deposition), necrosis of bone extremities with femoral head necrosis. Presence of bloody fluids in pericardial sac was developed at the end of 1st week. At second week all lesions were extended, but liver became atrophied but bone abnormalities (amyloid arthritis, necrosis of bone extremities, femoral head necrosis) were increased in severity. (Figure, 1-4)

At day 7 post inoculation oral and intranasal inoculated groups showed, pneumonia, air sacculitis, pericarditis, enlarged pale liver and with areas of congestions, splenomegaly, enteritis, large lobulated kidneys and hydro pericardium with variable degrees. While cecal core was detected in intra nasal inoculated ducks. Mild bone abnormalities (necrosis in bone extremities, femoral head necrosis) were recorded in intra nasal inoculated group

Table (2) Prevalence of Enterococcus faecalis in examined ducks.

<table>
<thead>
<tr>
<th>Duck flock</th>
<th>Duckling farms breed</th>
<th>Duckling backyard breed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Muscovy</td>
<td>Muller</td>
</tr>
<tr>
<td>Isolated</td>
<td>5/19</td>
<td>26.31%</td>
</tr>
<tr>
<td>Enterococcus</td>
<td></td>
<td>1/11</td>
</tr>
</tbody>
</table>

Table (3) lesion score of experimental Enterococcus faecalis infection 1st week post infection

<table>
<thead>
<tr>
<th>Route of enterococcus inoculation</th>
<th>Number of ducks</th>
<th>air sacculitis</th>
<th>Pericarditis</th>
<th>Perihepatitis</th>
<th>Splenomegaly</th>
<th>Lobulated enlarged kidney</th>
<th>Congestion of ribs</th>
<th>Lung congestion</th>
<th>Enteritis and/or Caecal core</th>
<th>Femoral head necrosis</th>
<th>Hydro pericardium</th>
<th>Enterococcus positive duck re-isolation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>10</td>
<td>-</td>
<td>4/4</td>
</tr>
<tr>
<td>Oral</td>
<td>10</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>enteritis</td>
<td>-</td>
<td>-</td>
<td>4/4</td>
</tr>
<tr>
<td>Intranasal</td>
<td>10</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>enteritis</td>
<td>-</td>
<td>-</td>
<td>4/4</td>
</tr>
<tr>
<td>Intravenous</td>
<td>10</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>enteritis</td>
<td>-</td>
<td>-</td>
<td>4/4</td>
</tr>
<tr>
<td>Intrathoracic</td>
<td>10</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>enteritis</td>
<td>+</td>
<td>+</td>
<td></td>
<td>4/4</td>
</tr>
</tbody>
</table>
A- Duck experimentally infected with Enterococcus Faecalis by oral route showing hemorrhagic streaks on heart at (1st week post inoculation).
B- Femoral Head Necrosis (FHN) in 18 day old duck experimentally infected with Enterococcus Faecalis by intra thoracic route at (2 end post inoculation).
C- Cecal core of experimentally infected ducks with Enterococcus faecalis by intranasal route (3 week post inoculation).
D- Perihepatitis, pericarditis, airsaculitis of experimentaly infected ducks with Enterococcus\textit{faecalis} (2end Week PI, Oral route).

\textbf{Discussion}
This study was made to study the prevelance, pathogenicity and antimicrobial resistance of Enterococcus infection in farms and backyard ducks in Damietta providence.
Clinically diseased examined ducks showed, general signs of illness in the form of depression, anorexia, reduced water and feed consumption, ruffled feathers and body weight loss, inactivity and diarrhea. Others showed nervous manifestations, lameness and inability to stand. Sudden death of some birds was recoded. While, the post mortem findings revealed,general venous congestion in all internal organs with signs of septicemia, hepatosplenomegaly, airsaculitis, pericarditis, perihepatitis, ascites, enteritis, hydropericardium, bone abnormalities, arthritis and brain congestion. Similar clinical signs and post mortem lesion were recorded in ducks affected by bacterial pathogens in various degrees of morbidity and mortalities by Gary (1997).
Tsai et al (2004) reported that, Enterococci belong to the lactic acid bacteria group and are widely distributed in nature, but they are not generally recognized as safe. On the contrary, Moellering (1992), and Leclercq and Courvalin (1997) showed that, the Enterococcus Faecal is considered to be a harmless commensal with very low pathogenic potential. Enterococcus Faecalis was isolated in arate of 77.7%, 36.3% from duckling farms and backyard respectively rather than grower ducks. This result is nearly similar with that reported by Saikia et al (1995) who isolated Enterococcus Faecalis by (70.9%) from duckling less than eight weeks. Also, Smyth and McNamee (2001) demonstrated that, E. faecalis, E. hirae, and E. durans were the most common Enterococcus spp causing both septicaemia and localized infections in poultry. Mette et al. (2011) and Olsen et al. (2012) reported that Enterococcus faecalis was the most significant bacterial pathogens associated with first week mortality in poultry.

The isolated Enterococcus faecalis strains were found to be resistant to different antibiotics including Chloramphenicol, Ciprofloxacin, Gentamycin, Kanamycin, Nalidixic acid, Neomycin, Tetracycllin, Streptomycin and Vancomycin while, sensitive to Ampicillin. These results agreed with Aarestrup et al. (2000) who reported that E. Faecalis isolated from broilers showed widespread resistance to chloramphenicol, macrolides, kanamycin, streptomycin and tetracycline. Lukašova and Šustačkova (2003) reported that, Enterococci have been known to be resistant to most antibiotics used in clinical practice. They are naturally resistant to cephalosporins, aminoglycosides and clindamycin and may also be resistant to tetracyclines and erythromycin. They are moderately sensitive to penicillin, ampicillin and glycopeptides. On other hand Saikia et al. (1995) found that, the Enterococci isolated from duck intestines consisted of E. faecalis and E. faecium were resistant to several antibiotics; chloramphenicol and gentamycin sulphate were the only antibiotics of those tested which were moderately effective.

Experimentally, Enterococcus faecalis infection via intravenous route in Pekin ducks showed, severe clinical signs including apathy, reduced mobility, diarrhoea and central nervous signs such as head tremor and opisthotonus, birds died within the first 2 days p.i. At autopsy enlarged pale liver with areas of congestions, peri hepatitis, pericarditis, enteritis, large lobulated kidney, enlarged spleen, air saculitis, endocarditis but in severe stage, presence of cecal core in intravenous inoculated birds, pneumonia, arthritis (amyloid deposition), necrosis of bone extremities with femoral head necrosis. These results agree with
with the exception that, the mortality rate were 40%, (4 out of 10) along the experimental period while in intravenously infected group showed 100% mortality after 2 days post infection which may be refered to the *Enterococcus* strain used *Enterococcus cecorum*. Also, *Metzneret al. (2010)* reported that, 12-day-old ducks intravenously inoculated with *Enterococcus* led to 100% mortality within 2 days. While, by air sac, 67% mortality within 4 days p.i. but surviving ducks showed clinical disease, pathological lesions and significantly lower body weight gain.

Oral and intra-nasal inoculated ducklings showed mild clinical signs of illness, decrease food intake, relative increase in water intake and diarrhea with decreased activity at 3rd day post inoculation. At 4th day post inoculation in orally infected ducks showed nervous signs such as head tremor and opisthotonus before death. Mortality rate in both inoculated groups were 20% (2 out of 10) along experimental period. Similar finding was reported by *Landmanet al. (1999)* and *Leslie et al. (2011)*.

Conclusion

This study shows the importance of *Enterococcus* bacteria as a bacterial pathogen for young duckling, high resistance to antibiotics Attention should be paid to improve biosecurity and need to find methods to counteract such diseases

References

تم أجراء اختبار الإصطناعي (الهذة الأ مدفوعة) لبعض المسببات البكتيرية المعزولة على النحو التالي:

1. عند إجراء الفحص الظاهرة اظهرت النتائج ان طيور البط المريضة في الزواحف أو التربة المنزلية تعاني من إعراض تتمثل فالاكتساب،فقدان الشهية وانخفاض استهلاكمياء الطيور اعراض عصبية وآخرى اظهرت العروج عند الموارنة،مثلما كان الحال في فجائي لبعض الطيور.
2. عند إجراء الصفة التشريحة اظهرت النتائج عن وجود اختلاف عام في جميع الأجهزة الداخلية مع وجود علامات تسمم الدم،مع تضخم الكبد والظلال،والالتهاب في الأكياس الهوائية وظاهرة القامل مع وجود حالات استنفادة لبعض الطيور،وأخرى سجلت التهابات بالأمعاء وتشوهات بالظلام والتهاب المفاصل.
3. تم عزل المكورات المعوية (الكلايروكسفيسكلاس) من الأعمار الصغيرة في مزارع البط والتبية المنزلية بنسبة (77.7%) و (36.3%) بالترتيب
4. تم عمل اختبار الصيدلية للمضادات الحيوية لميكروب الفانتروكسيفيسكلاس ووجد أن ميكروب الفانتروكسيفيسكلاس لا يستجيب لمعظم المضادات الحيوية عدا الأميبيسيلين.