Prevalence and Molecular detection of some virulence genes among Salmonella species Isolated from Poultry

Mahmoud Ezzat¹, Mahmoud Elsotohy², Abo Elkheir Esawy², Ali Wahdan¹

¹Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, 41522 Ismailia, Egypt.
²Animal Health Research Institute, Bacteriology, Immunology and Mycology department, Mansoura laboratory, Egypt.

* Mahmoud Ezzat…. Email: mezzat05@yahoo.com
* Mahmoud Elsotohy…. Email: medo_sotohy2005@yahoo.com
* Abo Elkheir Esawy…. Email: esawy55@gmail.com
* Ali Wahdan…. Email: dr_aly_w@yahoo.com

Abstract:
The current study aimed to isolate the salmonella species from different organs of broilers with complete phenotypic identification of the recovered isolates. After that all recovered isolates were tested for detection of some genes responsible for pathogenicity. A total of 250 samples from broilers farms were examined bacteriologically for isolation of salmonella. All recovered isolates were identified phenotypically, biochemically and serologically. PCR technique was used for detection of invA, hilA and avrA genes. Bacteriological examination of samples revealed that Salmonella was recovered in 34 samples out of 250 samples (13.6%). Twelve S. Typhimurium, 8 S. Kentucky, 5 S. Newport, 2 S. Tamale, 2 S. Enteritidis, 1 S. Molade,2 S. Takoradi, 1 S. Virchow and 1 S. Inganda were isolated from broilers with percentage of (35.29%), (23.5%), (14.7%), (5.88%), (5.88%), (2.94%), (5.88%), (2.94%) and (2.94%) respectively. All tested Salmonella serovars showed positive amplification at 284 bp, 150 bp and 422 bp fragments which specific for the invA gene (common gene), hilA gene and avrA gene respectively, with total percentage (100%) from examined samples.

Keywords: Salmonella species, Salmonella virulence genes, broilers, PCR.

Introduction:
Salmonellosis is an important health problem and a major challenge worldwide. Salmonella spp. are Gram negative and rod shape which have been divided into over 2700 serotypes based on somatic, flagellar and capsular antigens (Gallegos et al., 2008). Many authors (Bailey and Maurer, 2001;
Mølbak et al., 2006) have outlined that bacteria of genus *Salmonella* are important causes of foodborne infections in humans, and the most frequent etiological bacterial agents of foodborne disease outbreaks. In particular, two *Salmonella* serotypes, *S. Enteritidis* and *S. Typhimurium* became major causes of human illness in the 1980s and 1990s, with important impact on public health and the economy in industrialized countries.

The genus *Salmonella* is divided into two species *Salmonella* Enterica and *Salmonella* Bongori; *Salmonella* Enterica itself is comprised of 6 subspecies. They are *S. Enterica subsp.* Enterica, *S. Arizonae*, *S. Diarizonae*, *S. Indica*, *S. Salamae* & *S. Houtenae or I, II, IIIa, IIIb, IV and VI*, respectively (Popoff and Minor, 1997; Brenner, et al., 2000).

Salmonella pathogenicity island (SPI) is a genetic element that occurs as a distinct and separate unit in the bacterial chromosome. There are approximately 200 genes including those on the five *Salmonella* chromosomal pathogenicity islands (SPI-1 to SPI-5) on *Salmonella* chromosomes that are essential for their virulence Hensel (2004).

To fulfill the aim of the work, the following were done:

1- Isolation of *Salmonella* using global standard methods (from internal organs) in different poultry farms.

2- Identification of the isolated organism (biochemical and serological identification).

3- Detection of common *Salmonella* virulence genes using cPCR.

Material and methods:

Samples: A total of 250 chicken samples from broilers farms were collected for *Salmonella* isolation and these samples include liver, caecum, spleen and heart blood. All samples were put in sterile plastic bags in ice box and transported directly to Mansoura laboratory (Animal Health Research Institute).

Identification of the isolates: Each sample was inoculated separately in selenite F broth and incubated at 37°C for not more than 18 hours and rappaport-vassiliadis soya broth incubated at 42°C for 24 hours. A loopful from the enrichment culture was streaked onto the surface of Xylose Lysine Deoxycholate (XLD), *Salmonella* Shigella agar (S-S agar) and MacConkey's plates then incubated at 37°C ± 1°C for 24hrs ± 2hrs. MacConkey's plates were used to detect the presence of coliform lactose fermenters. Each colony was identified morphologically and biochemically according to Quinn et al. (2002).

Serological identification:

The preliminarily identified isolates biochemically as *Salmonella* were subjected to serological identification according to Kauffman-White Scheme (Kauffman, 1974) for
determination of somatic (O) and flagellar (H) antigens using slide agglutination test.

PCR detection of Salmonella isolates virulence genes: Ten *Salmonella* serovars were examined for detection of *invA*, *hilA* and *avrA* genes. QIAamp DNA Mini Kit used for extraction of DNA. Primers used were shown in table (2). Temperature and time conditions of the primers during PCR are shown in table (3). Electrophoresis grade agarose (1 g) was prepared in 100 ml TBE buffer in a sterile flask, it was heated in microwave to dissolve all granules with agitation, and allowed to cool at 70°C, then 0.5μg/ml ethedium bromide was added and mixed thoroughly according to (Sambrook et al., 1989)

Results:
A total of 250 chickens (70 apparently healthy, 90 diseased chickens and 90 freshly dead broiler chickens) were collected from different farms in Dakahlia Governorate and the clinically examined birds showed signs of septicemia, retarded growth, depression, profuse watery white diarrhea and accumulation of fecal matter around the vent. While the freshly dead birds show bronze discoloration and enlargement of liver, spleenomegaly, inflammation of intestine and caecum and unabsorbed yolk sacs in young chicks. Bacteriological examination of samples all over seasons of the year revealed that *salmonella* was recovered in 34 samples with an incidence rate 13.6 % (34 out of 250). It was clear that *Salmonella* was recovered from 4 samples out of 70 examined samples from apparently healthy chicken (5.7%), 18 samples out of 90 diseased chickens (20%) and 12 samples out of 90 freshly dead broiler chickens (13.33%) were found to be positive for *Salmonella* as shown in table (1).After culturing on XLD, *Salmonella* appeared as smooth red coloured colonies with black center. While on Hektone enteric it appeared as deep blue colonies but on MacConkey's agar appeared as pale, colorless smooth, transparent and raised colonies and on Salmonella Shigella (S-S) agar *Salmonella* produce colourless colonies with black centers due to H2S production. The staining characters appeared as Gram negative, non-spore forming short rod shaped. Serologically identified into twelve *S. Typhimurium*, 8 *S. Kentucky*, 5 *S. Newport*, 2 *S. Tamale*, 2 *S. Enteritidis*, 1 *S. Molade*,2 *S. Takoradi*, 1 *S. Virchow* and 1 *S. Inganda* were isolated from broilers with percentage of (35.29%), (23.5%), (14.7%), (5.88%), (5.88%), (2.94%), (5.88%), (2.94%) and (2.94%) respectively.

All 10 *Salmonella* serovars showed positive amplification at 284 bp, 150 bp and 422 bp fragments which specific for the *invA* gene (common gene), *hilA* gene and *avrA* gene
respectively, with total percentage (100%) from examined samples as

Table (1) *Incidence of Salmonella infection in examined chickens*

<table>
<thead>
<tr>
<th>Examined chicken</th>
<th>Number of examined chicken</th>
<th>Number of positive</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apparently healthy chicken</td>
<td>70</td>
<td>4</td>
<td>5.7</td>
</tr>
<tr>
<td>Diseased chicken</td>
<td>90</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>Freshly dead chicken</td>
<td>90</td>
<td>12</td>
<td>13.33</td>
</tr>
<tr>
<td>Total</td>
<td>250</td>
<td>34</td>
<td>13.6</td>
</tr>
</tbody>
</table>

Table (2): Primers of some virulence genes.

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence (5'-3)</th>
<th>Amplified product (size)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>invA</td>
<td>GTGAAATTATCGCCACGTTCGGGCAA TCACTCGCACCCTTCAAGGACC</td>
<td>284 bp</td>
<td>Oliveira et al., 2003</td>
</tr>
<tr>
<td>Hila</td>
<td>CATGGCTGTCAGTTGGAG</td>
<td>150 bp</td>
<td>Yang et al., 2014</td>
</tr>
<tr>
<td>avrA</td>
<td>CCT GTA TTG AGC GTG TGG AGA AGA GCT TCG TTG AAT GTC C</td>
<td>422 bp</td>
<td>Huehn et al., 2010</td>
</tr>
</tbody>
</table>

Table (3): Cycling conditions of the different primers during cPCR

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primary denaturation</th>
<th>Secondary denaturation</th>
<th>Annealing</th>
<th>Extension</th>
<th>No. of cycles</th>
<th>Final extension</th>
</tr>
</thead>
<tbody>
<tr>
<td>invA</td>
<td>94°C 5 min.</td>
<td>94°C 30 sec.</td>
<td>55°C 30 sec</td>
<td>72°C 30 sec</td>
<td>35</td>
<td>72°C 7 min.</td>
</tr>
<tr>
<td>hila</td>
<td>94°C 5 min.</td>
<td>94°C 30 sec.</td>
<td>60°C 30 sec</td>
<td>72°C 30 sec</td>
<td>35</td>
<td>72°C 7 min.</td>
</tr>
<tr>
<td>avrA</td>
<td>94°C 5 min.</td>
<td>94°C 30 sec.</td>
<td>58°C 30 sec</td>
<td>72°C 30 sec</td>
<td>35</td>
<td>72°C 10 min.</td>
</tr>
</tbody>
</table>

Figure (1): PCR photo showing *Salmonella invA* gene at 284 bp. Lane L: 100-600pb DNA ladder. Pos.: Positive control (reference strain from Animal
Health Research Institute, Dokki, Egypt). Neg.: Negative control. Lane 1: S. Kentucky. Lane 2: S. Tamale. Lane 3: S. Inganda. Lane 4 and 7: S. Typhimurium. Lane 5: S. Newport. Lane 6: S. Molade. Lane 8: S. Enteritidis. Lane 9: S. Takoradi. Lane 10: S. Virchow.

Figure (2): PCR photo showing *Salmonella hilA* gene at 150 bp. Lane L: 100-600pb DNA ladder, Pos.: Positive control (reference strain from Animal Health Research Institute, Dokki, Egypt). Neg.: Negative control. Lane 1: S. Kentucky. Lane 2: S. Tamale. Lane 3: S. Inganda. Lane 4 and 7: S. Typhimurium. Lane 5: S. Newport. Lane 6: S. Molade. Lane 8: S. Enteritidis. Lane 9: S. Takoradi. Lane 10: S. Virchow.

Figure (3): PCR photo showing *Salmonella avrA* gene at 422 bp. Lane L: 100-600pb DNA ladder. Positive control (reference strain from Animal Health Research Institute, Dokki, Egypt). Neg.: Negative control. Lane 1: S. Kentucky. Lane 2: S. Tamale. Lane 3: S. Inganda. Lane 4 and 7: S. Typhimurium. Lane 5: S. Newport. Lane 6: S. Molade. Lane 8: S. Enteritidis. Lane 9: S. Takoradi. Lane 10: S. Virchow.

Discussion:
In this study 250 broiler chickens from different poultry farms in Dakahlia governorate were examined for the presence of *Salmonella*, 34 out of 250 chickens (13.6%) were found positive while 216 (86.4%) chickens were negative for *Salmonella* isolation. The incidence of *Salmonella* in broilers was 13.6% (34 out of 250 chickens) and these results agree with
Rehan (2004) who isolated Salmonella species from broiler chickens with an incidence of 12%, Ammar et al. (2010) who identified the most common Salmonella serovars in broilers and laying breeding reproducers in Eastern Algeria and isolated S. Typhimurium with incidence of (12%). Chon et al. (2015) investigated the occurrence of Salmonella spp. isolated from 120 chicken carcasses produced in 6 poultry slaughterhouses in South Korea were 11 samples (9.2%). Osman (1992) isolated 45 Salmonella strains with an incidence of 30% out of 150 random samples from different broiler farms. On the other hand, lower incidence was recorded by Magwedere et al. (2015) was 5%. Ibrahim et al. (2018) discussed that the prevalence of Salmonella was 6.8% in broilers, 42.3% in layers, 0% in breeders and cloacal swabs, 6.5% in litter and 15.6% in eggs.

In this study Salmonella were rapidly detected by targeting invA gene, giving PCR product of 284 bp size. Therefore, this technique can be used for the screening of Salmonella in the routine testing. Darwin and Miller (1999) reported that the invA gene encodes a protein in the inner membrane of bacteria, which is necessary for invasion to the epithelial cells of the host. Lampelet al. (2000) observed that Salmonella specific PCR with primers for invA is rapid, sensitive, and specific for detection of Salmonella in many clinical samples. The genes hilA, hilC, hilD and invF suggests that these regulators operate in a hierarchy to modulate invasion gene expression with hilA acting as the central regulator in this cascade. The hilA, is required for expression of SPI-1 invasion genes (Schechter and Lee, 2000). The invF and its putative chaperone protein, sicA (along with hilA) is responsible for activating and controlling the expression of TTS-associated proteins encoded within and outside of SPI-1.

PCR assay was carried out for the detection of the avrA gene from isolated strains has revealed that the gene was present in all of the isolates (100%) which was demonstrated by the presence of a 422 bp PCR product. The results obtained in the present study were in corroboration with Karen et al., (2013); Ren et al., (2016). Moreover, Claudete et al. (2017) detected the avrA gene in all of the S. Pullorum and S. Gallinarum serotype strains (100%) and 38 (97.4%) strains of the paratyphoid group were positive. avrA is an effector protein of the TTSS complex that contributes to the virulence of Salmonella spp. by limiting the host’s inflammatory responses through the inducement of cell apoptosis, especially of macrophages, and by the inhibition of IL-8 and TNF-α (Collier-Hyamset al., 2002).

Conclusion:
From the previous result, concluded that widespread o
Salmonella spp. among the broilers in Dakahlia
Governorate in this study may be due to insufficient hygiene,
improper disinfection in hatcheries and farms. Also, there are defect in
farm biosecurity. Further studies are needed to improve surveillance
strategies to decrease the prevalence of Salmonella spp. in chicken
population of Dakahlia Governorate. PCR technique is rapid and a sensitive confirmatory
method detection of Salmonella.

References:
Ammar, A.; Alloui, N.; Bennoune, O. and Kassah-
Laouar, A. (2010): Survey of Salmonella serovars in broilers and
laying breeding reproducers in East of Algeria. Journal Infection Dev
Ctries. 4(2):103-106.

and Frontiers, 2nd en, eds Doyle, M. P., L. R. Beuchat & T. J.

Brenner, F.W.; Villar, R.G.; Angulo, F.J.; Tauxe, and

Chon, J. W.; Jung, H. I.; Kuk M.; Kim, Y. J.; Seo, K. H. and Kim, S.
K.(2015): High occurrence of extended-spectrum β-lactamase-
producing Salmonella in broiler carcasses from poultry

Claudete, S. Astolfi-Ferreira; Marcelo, R.S. Pequini; Luis, F. N.
Nuñez; Silvana, H. Santander Parra; Ruy, Chacon; David, I. D.
de la Torre; Antonio, C. Pedroso and Antonio, J. Piantino, Ferreira
(2017): A comparative survey between non-systemic Salmonella
spp. (paratyphoid group) and systemic Salmonella Pullorum and
S. Gallinarum with a focus on virulence genes. Pesq. Vet. Bras.
37(10):1064-1068.

Collier-Hyames, L.S.; Zeng, H.; Sun, J.; Tomlinson, A.D.; Bao,
Z.Q.; Chen, H.; Madara, J.L.; Orth, K.; Chen, H. and Neish,
the key proinflammatory, anti-apoptotic NF-kB pathway. J.

Darwin, K.H. and Miller, V.L. (1999): Molecular basis of the
Rev. 12:405-428.

Identification of Salmonella serotypes isolated from cantaloupe
and chile pepper production system in Mexico using PCR-RFLP. J.
Food Protect., 71(11): 2217-2222.

Ibrahim, Madiha, Salah; Wael, Said, El Shafey; Mohammed, Farouq, Hashim and Ahmed, Abo-Elmagd, Bekheet (2018): Detection of salmonella serovars and their common virulence genes from different chicken breeding systems. ejpmr, (7), 54-60.

M. تواجد والكشف الجزيئي لبعض جينات الضراوة بين أنواع السالمونيلا المعزولة من الدواجن

معظم عينات الدواجن مصنفة في أنواع محددة بحسب اختبارات الفحص البكتريولوجي والمناعة والفيطريات وتقنية تفاعل إنزيم البلمرة المتسلسل. أظهرت جميع عينات السالمونيلا التي تم اختبارها وجود جينات invA، hilaA، avrA بنسبة 100%.

مدة تواجد الكشف الجزيئي لبعض جينات الضراوة بين أنواع السالمونيلا المعزولة من الدواجن

1 - قسم البحوث الفيروسات والتثبيط - كلية الطب البيطري - جامعة قناة السويس.
2 - معهد بحوث صحة الحيوان – معامل المنصورة – الدقهلية.

تهدف الدراسة الحالية إلى عزل أنواع السالمونيلا من الأعضاء المختلفة من بدارى التسمين مع التعرف الظاهري الكامل للمعزولات. بعد ذلك تم اختبار جميع المعزولات المستعادة للكشف عن بعض الجينات المسؤولة عن البكتيريا المسببة للاصابة. تم الفحص البكتريولوجي لـ 350 عينة من مزارع الدواجن بدارى التسمين باستخدام تقنية تفاعل إنزيم البلمرة المتسلسل للكشف عن جينات invA، hilaA، avrA.}

during the study period. Multiple Salmonella species were isolated from different organs of chickens. The results indicate that Salmonella enterica serovar Typhimurium and Salmonella enterica serovar Pullorum were the most commonly isolated species. The study suggests the need for further research to identify the epidemiology and control measures for these species in Egyptian poultry flocks.

M. تواجد الكشف الجزيئي لبعض جينات الضراوة بين أنواع السالمونيلا المعزولة من الدواجن

1 - قسم البحوث الفيروسات والتثبيط - كلية الطب البيطري - جامعة قناة السويس.
2 - معهد بحوث صحة الحيوان – معامل المنصورة – الدقهلية.

تهدف الدراسة الحالية إلى عزل أنواع السالمونيلا من الأعضاء المختلفة من بدارى التسمين مع التعرف الظاهري الكامل للمعزولات. بعد ذلك تم اختبار جميع المعزولات المستعادة للكشف عن بعض الجينات المسؤولة عن البكتيريا المسببة للاصابة. تم الفحص البكتريولوجي لـ 350 عينة من مزارع الدواجن بدارى التسمين باستخدام تقنية تفاعل إنزيم البلمرة المتسلسل للكشف عن جينات invA، hilaA، avrA.