Molecular Characterization of *Escherichia Coli* Isolated from Meat and Meat Products in Port-Said Markets

Eid H.M., El-Tabiy A.A.*, Fathy S.M.

*Department of Bacteriology, Immunology and Mycology, Fac. Vet. Med. Suez Canal University, *Animal Health research institute, Port-Said branch.*

Abstract

Eight hundred of meat products collected randomly from Port-Said markets for *E. coli* isolation. *E. coli* total prevalence was (43%). *E. coli* presence in minced meat was (19.77%) followed by raw meat as (17.44%), sausage as (17.15%), burger as (16.57%), pastirma as (15.70%), luncheon as (6.10%), salami as (4.07%), and frankfurter as (3.20%). PCR showed that *E. coli* serotypes were positive for (*phoA*) and (*tsh*) while negative for (*stx1*) and (*Vt2e*). *E. coli* O26, O125, and O157 carried (*eaA*). *E. coli* O157 was the only serotype that carried (*hly*) and (*stx2*).

Introduction

Meat and meat products are an excellent source of a wide variety of nutrients, high quality proteins, vitamins, and certain minerals. These nutrients are required for growth and multiplication of many microorganisms so they considered as important sources of human infections with a variety of foodborne pathogens as *Enterobacteriaceae Doulgeraki et al. (2012)*. *Escherichia coli* is a Gram-negative rod-shaped bacterium belonged to family *Enterobacteriaceae* that is commonly found as a part of the normal microflora in the intestinal tract of humans and warm-blooded animals *Meng et al. (2007)*. *E. coli* serotypes were categorized according to virulence genes they possess, clinical signs, and mode of transmission into enterotoxigenic (ETEC), enter invasive (EIEC), enteropathogenic (EPEC), enterohemorrhagic (EHEC), and enteroaggregative (EAEC) *Koneman et al. (1997)*. The virulence of *E. coli* is mainly associated with their ability to damage intestinal epithelial cells and two phage-encoded cytotoxins called shiga toxins (*stx1* and *stx2*) *Wong et al., (2000)*. Other major virulence genes besides shiga toxins are attaching and effacing gene (*eaA*) and hemolysin gene (*hly*) *Paton and Paton (1998)*.

The aim of this study was to determine the prevalence of *E. coli* in raw meat and meat-based products, serotyping, and screen virulence genes (*phoA*, *hly*, *eaA*, *tsh*, *stx1*, *stx2*, and *Vt2e*) presence in isolated serotypes using PCR.
Material and Methods

Samples collection: 700 meat-based products and 100 fresh raw meat specimens were collected randomly from Port Said governorate during the period between September 2016 to September 2018.

Bacteriological isolation: 25 grams of each product represented the product sample were added aseptically to 225 ml buffered peptone water then were enriched by incubation at 37°C for 24 hours (ICMSF 1978). Enriched samples were streaked on Eosin Methylene Blue agar (EMB) and MacConkey’s agar and incubated at 37°C for 24 hours while on Tryptone Bile Glucuronic Agar (TBX) were incubated first at 37°C for 4 hours then at 44°C for 20 hours (Koneman et al. 1997).

Serological examination: Isolates were submitted to serological typing by slide agglutination test using O somatic antigen Edwards and Ewing (1972).

Polymerase Chain reaction: For detection of different virulence genes in E. coli serotypes, oligonucleotide primers that have specific sequence and amplify a particular product were used (Table 1). DNA extraction had been done by following manufacturer’s instructions of QIAamp DNA mini kit as shown in Table (2). PCR products were electrophorized using 1.5% agarose gel using Gel casting apparatus (Biometra). The gel was photographed by a gel documentation system and the data analyzed through computer software according to Sambrook et al. (1989).

<table>
<thead>
<tr>
<th>Target gene</th>
<th>Primers sequences 5’-3’</th>
<th>Amplified segment (bp)</th>
<th>Reference</th>
</tr>
</thead>
</table>
| phoA | F: 5-CGTGATCAGCGGTGACTATGAC-3
R: 5-CGATTCTGGAAATGGCAAAG-3 | 720 bp | Hu et al., (2011) |
| hly | F: 5-AACAAGGATAAGCCTGTTGTGCAGTGG-3
| eaeA | F: 5-ATGCTTATGGCTTTAGTGG-3
R: 5-GCCCTTCATCATTTCCCTGT-3 | 248 bp | Bisi-Johnson et al., (2011) |
| tsh | F: 5-AGTCCACCGTGATAGTAGTG-3
| stx1 | F: 5-ACACTGGATGATCTCAGTGG-3
R: 5-CTGAATCCCCTCCATTATG-3 | 614 bp | Dipineto et al., (2006) |
| stx2 | F: 5-CCATGACACGCCAGACAGAT-3
R: 5-CCTGTCACCTGACAGACACT-3 | 779 bp | Orlandi et al., (2006) |
| Vf2e | F: 5-CCAGAATGTCAAGATAAATCTGACGTG-3
R: 5-GCTGAGACACTTTGTAAATGCACT-3 | 322 bp | |

F: Forward primer R: Reverse primer
Table (2): Cycling conditions of the different primers during cPCR:

<table>
<thead>
<tr>
<th>Target gene</th>
<th>Primary denaturation</th>
<th>Secondary denaturation</th>
<th>Annealing</th>
<th>Extension</th>
<th>No. of cycles</th>
<th>Final extension</th>
</tr>
</thead>
<tbody>
<tr>
<td>phoA</td>
<td>94˚C 5 minutes</td>
<td>94˚C 30 seconds</td>
<td>55˚C 40 seconds</td>
<td>72˚C 45 seconds</td>
<td>35</td>
<td>72˚C 10 minutes</td>
</tr>
<tr>
<td>hly</td>
<td>94˚C 5 minutes</td>
<td>94˚C 30 seconds</td>
<td>60˚C 40 seconds</td>
<td>72˚C 1 minute</td>
<td>30</td>
<td>72˚C 10 minutes</td>
</tr>
<tr>
<td>eaeA</td>
<td>94˚C 5 minutes</td>
<td>94˚C 30 seconds</td>
<td>51˚C 30 seconds</td>
<td>72˚C 30 seconds</td>
<td>35</td>
<td>72˚C 7 minutes</td>
</tr>
<tr>
<td>tsh</td>
<td>94˚C 5 minutes</td>
<td>94˚C 30 seconds</td>
<td>54˚C 40 seconds</td>
<td>72˚C 45 seconds</td>
<td>35</td>
<td>72˚C 10 minutes</td>
</tr>
<tr>
<td>stx1, stx2</td>
<td>94˚C 5 minutes</td>
<td>94˚C 30 seconds</td>
<td>58˚C 40 seconds</td>
<td>72˚C 45 seconds</td>
<td>35</td>
<td>72˚C 10 minutes</td>
</tr>
<tr>
<td>Vt2e</td>
<td>94˚C 5 minutes</td>
<td>94˚C 30 seconds</td>
<td>57˚C 40 seconds</td>
<td>72˚C 40 seconds</td>
<td>40</td>
<td>72˚C 10 minutes</td>
</tr>
</tbody>
</table>

Results and Discussion
Meat products are rich in nutritional composition that also causes the growth of many microorganisms including food pathogenic bacteria AL-Mutairi (2011). In the present study, *E. coli* prevalence was (43%) that is nearly similar to El-Sharkaway et al. (2016) who reported *E. coli* as (41%) in meat products while lower than Abd El Tawab et al. (2015) who isolated *E. coli* from (30.5%) of meat-based samples. *E. coli* isolates were (19.77%) in minced meat, (17.44%) in raw meat, (17.15%) in sausage, (16.57%) in burger, (15.7%) in pastirma, (6.1%) in luncheon, (4.07%) in salami, and (3.2%) in frankfurter. The present results is lower than El-Sharkaway et al. (2016) as they recorded *E. coli* highest ratio in burger as (29.26%) followed by minced meat as (26.82%), sausage as (24.39%), and pastirma as (19.51%). Serologically, the prevalence of various *E. coli* serotypes revealed that the most predominant serotype was O125 as (25%) followed by O158 as (20.93%), O111 as (10.47%), O55 as (8.43%), O157 as (5.81%), O26 as (4.07%), O119 as (2.33%), O142 as (2.03%), O114 as (1.74%), both O124 and O136 as (1.45%), O78 as (1.16%), O112 as (0.87%), both O63 and O126 as (0.58%), both O25 and O86 as (0.29%), and un-typed serotypes as (12.5%). Abd El Tawab et al. (2015) recorded the prevalence of *E. coli* O26 as (15.6%) which is higher than the present study while *E. coli* O111 was (9.4%) which is nearly similar to the current result. *E. coli* O157 was found in (5%) of meat
samples Abdul-Raouf et al. (1996) which is nearly similar to the present survey. Ammar et al. (2016) mentioned that (12.8%) of tested meat samples were positive for *E. coli* and O111 was the most prevalent serotype as (40.62%) followed by O26 as (12.5%), O124, O127, and O128 as (9.37%) for each, O78 and O119 (6.25%) for each which is higher than the present study.

Table (3) showed that 12 *E. coli* serotypes (O26, O55, O78, O111, O114, O119, O124, O125, O136, O142, O157, and O158) were subjected to PCR for detection of alkaline phosphates (phoA) gene and hemolysin (hly), attaching and effacing (eaeA), temperature sensitive hemagglutination (tsh), shiga toxin I (stx1), shiga toxin II (stx2), and verotoxin 2e (Vt2e) virulence genes. All isolates were positive for alkaline phosphates (phoA) gene Figure (1). These results agree with Chang et al. (1986) and Kong et al. (1999) who reported that phoA gene is a housekeeping gene present in all *E. coli* serotypes.

Hemolysin (hly) is significant virulence gene as it can result in extraintestinal injuries Bhakdi et al. (1990). Figure (2) showed that only *E. coli* O157 carried hly gene that agrees with Chinen et al. (2001) while Abd El Tawab et al. (2015) revealed that hly gene was absent in *E. coli* O157.

The detection of attaching and effacing (eaeA) gene by PCR viewed in Figure (3) showed that three of the examined isolates were positive for the eaeA gene. This result agrees with Hala et al. (2011) who detected the eaeA gene in (20%) of *E. coli* isolates but disagree with Mohammadi et al. (2013) who reported that all of *E. coli* isolates were eaeA-negative.

The three *E. coli* serotypes that carried eaeA gene were *E. coli* O26, O125, and O157. This goes parallel with Dambrosio et al. (2007) who recorded that *E. coli* O26 harbored eaeA and Osek and Gallien (2002) who detected presence of eaeA in *E. coli* O157. Ibrahim et al. (2015) reported that eaeA was absent in *E. coli* O124 while present in *E. coli* O125 which agrees with the current result.

Osek and Gallien (2002) recorded that *E. coli* O157 that carried eaeA also harbored hly which is in line with current result. As reported by Paton and Paton (1998) and Karch et al. (1992), the combination between these two virulence genes is an important indicator of pathogenicity of *E. coli* for humans than each gene alone. Therefore, isolated *E. coli* O157 can be a potential health risk for man.

In the present study, result of temperature sensitive hemagglutination gene (tsh) presented in Figure (4) that all *E. coli* serotypes carried tsh. This agrees with Janben et al. (2001) and Saitenberg et al. (2013) who detected tsh gene in (85.3%) and (78.3%) of *E. coli* respectively.
However, tsh is mainly isolated from avian pathogenic E. coli (APEC), our results confirms its presence in all E. coli serotypes. Abdulgayeid et al. (2015) recorded tsh gene in all E. coli isolates recovered from buffalo calves’ fecal samples. This may be a result of the expression of tsh gene in different animal species is underestimated or a poultry-to-buffalo transmission of APEC.

The most important virulence genes that responsible for pathogenicity of E. coli are shiga toxins (stx1 and stx2) Vallance and Finlay (2000). Figure (5) showed that none of E. coli serotypes carried stx1. Only E. coli O157 carried stx2 that was absent in all other serotypes.

The present result was parallel with Murphy et al. (2005) and Dambrosio et al. (2007) who recorded absence of stx1 and stx2 in E. coli O26 and Ibrahim et al., (2015) who confirmed that E. coli O124 did not carry stx1 or stx2. Abd El Tawab et al. (2015) recorded that stx1 was absent in E. coli O111, O26, and O157 serotypes while E. coli O157 carried stx2 and produced a particular band at 779 bp which is in line with the current survey. On the other hand, Tafida et al. (2014) recognized stx1 in E. coli O157 isolates while stx2 was absent and Gomez-Aldapa et al. (2013) reported that none of E. coli O157 isolates had stx1 or stx2.

Figure (6) showed that Verotoxin2e (Vt2e) was absent in all E. coli serotypes which disagreed with Younis et al. (2015) who isolated Vt2e from (20%) of E. coli samples.

![Figure 1: PCR result of (phoA) in E. coli serotypes.](image)

Figure (1): PCR result of (phoA) in E. coli serotypes.
- **Lane (1):** Negative control, **Lane (2):** Positive control, **Lane (3):** Molecular marker, **Lane (4, 5, 6, 7, 9, 10, 11, 12, 13, 14, and 15):** E. coli serotypes phoA-positive at 720 bp.
Figure (2): PCR result of *(hly)* virulence gene in *E. coli* serotypes.

Figure (3): PCR result of *(eaeA)* virulence gene in *E. coli* serotypes.
Figure (4): PCR result of \((tsh)\) virulence gene in \(E.\ coli\) serotypes.
Lane (1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, and 14): \(E.\ coli\) serotypes \(tsh\)-positive with 620 bp band, Lane (7): Molecular marker, Lane (8): Positive control, and Lane (15): Negative control.

Figure (5): PCR result of \((stx1)\) and \((stx2)\) virulence gene in \(E.\ coli\) serotypes.
Figure (6): PCR result of (Vt2e) virulence gene in *E. coli* serotypes. Lane (1,2,3,4,5,6,10,11,12,13,14, and 15) *E. coli* serotypes Vt2e-negative, Lane (7): Negative control, Lane (8): Positive control, Lane (9): Molecular marker.

Table (3) Distribution of phoA and virulence genes in *E. coli* serotypes:

<table>
<thead>
<tr>
<th>Serotype</th>
<th>phoA</th>
<th>hly</th>
<th>eaeA</th>
<th>tsh</th>
<th>stx1</th>
<th>stx2</th>
<th>Vt2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>O26</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O55</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O78</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O111</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O114</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O119</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O124</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O125</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O136</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O142</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O157</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O158</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

References

Abdulgayeid, M.; Shahin, H.;

Abdul-Raouf, U. M.; Ammar, M. S. and Beuchat, L. R. (1996): Isolation of *Escherichia coli*

El-Sharkaway, M. S.; Samaha, I.

Meng, J.; Doyle, M.; Zhao, T. and Zhao, S. (2007): Enterohemorrhagic *Escherichia coli*. Food Microbiology:
Fundamentals and Frontiers 3rd (Edn.), 249–269.

