Molecular Characterization of pathogenic E. coli isolated from meat and their products Ezzat, M., Shabana, I. I., Gihan M. O. Mohammed* and Marwa Abd El-Hak*

Department of Bacteriology, Immunology, Mycology - Faculty of Veterinary Medicine, Suez Canal University

* Department of Bacteriology, Animal Health Research Institute, Port-Said branch.

Abstract

This study was planned to throw the light on the prevalence of Escherichia coli (E. coli) in meat and meat products and determine its virulence gene that may be considered a significant food safety threat. Therefore two hundred samples of meat and meat products; minced meat, kofta, sausage, beefburger, pastirma, luncheon and hot dog (25 of each) were randomly collected from supermarkets, butcher shops and street vendors in Ismailia city. Bacteriological examination revealed that the prevalence of E. coli was 17% of the total collected samples. Serological identification of E. coli isolated from meat, minced meat, beefburger and pastirma revealed that strains of E. coli were belong to serotypes O:157 K:-, O:91 K:-, O:103 K:-, O:125 K:70 respectively, while O:26 K:60 serotype was isolated from kofta and sausage. Strains from luncheon and hot dog were Untyped, in addition to isolated E. coli strains from all samples were untyped by using Anti-Coli I, II and III. Molecular characterization of typed strains of E. coli using Real-Time PCR (RT-PCR) showed that serotype O:26 K:60 was isolated from kofta and harbored both vt1 and vt2, while O:26 K:60, O:103 K:- and O:91 K:- serotypes isolated from sausage, beefburger and minced meat respectively, were harbored vt2 gene only.

Key words: E. coli, Virulence genes, meat and meat products.

Introduction

Meat and meat products have an important role in human nutrition as they are desirable foodstuffs. They are important sources for protein, fat, essential amino acids, minerals, vitamins and other nutrients (*Biesalski, 2005*). On the other hand, they are considered an ideal culture medium for growth of many organisms because of their high

high percentage moisture. of nitrogenous compounds of various degree complexity. plentiful of of minerals. accessorv supply growth factors and some fermentable carbohydrates (glycogen) of a favorable pH for most of enteric microorganisms (Mohammed, 2011). Changes in eating habits consumer have increased the demand for a wide variety of raw, frozen, pre-cooked and further processed meat items. As a result, the meat industry has continued to seek ways to increase the acceptability, lengthen the shelf life overall meat quality and safety of meat products (*Selvan et al*, 2007).

Meat products may be contaminated with microorganisms from meat handlers, which carry of pathogenic microorganism during the processes of manufacturing. packing and marketing. Improper cooking. refrigeration or storage may lead to meat borne illness. Food-borne pathogens are the leading causes of illness and death in developing countries costing billions of dollars in medical care, medical and social costs (Fratmico et al. 2005).

Microbial quality of meat and their products plays an important role in increasing public health issue all over the world (*Ahmed and Ismail,* 2010). However the use of proper hygienic practices in handling food of animal origin and proper heating of such foods before consumption are important control measures for the prevention of *E. coli* infections (*Michael, 1991*).

E. coli is an important member of the normal intestinal microflora of humans and other mammals (Kaper et al. 2004). It constitutes a significant risk to human health and remains an important cause of infant mortality in developing and Frankel, countries (Chen 2005). E. coli is commonly non virulent but some strains have

adopted pathogenic or toxigenic virulence factors that make them virulent for humans and animals. E. coli is the most predominant species poisoning food in all cases associated with some meat products (Gi et al, 2009). Various studies indicate that enteropathogenic E. coli cause diarrheal disease either by invasion of the intestinal mucosa after attachment to host epithelial cells through pili or by elaboration of enterotoxins (Sack. 1975).

Real-time PCR (RT-PCR) is a more efficient way of testing large numbers of samples and it is a single-step, closed-tube method that eliminates contamination. RT-PCR is very sensitive and can detect small amounts of samples (*Klein*, 2009) additionally; this method is highly sensitive making it more robust and reproducible than conventional PCR.

Due to the high incidence of foodborne infections, there is an urgent need for control and/or prophylaxis poisoning outbreaks for food associated with meat products. It depends greatly on investigating the causative agents in food (meat products). eliminating them to ensure food safety and to protect health from microbial public contamination of food. In this study, a RT- PCR assay was used for detection of 2 virulence genes (vtland vt2) in E. coli strains obtained from examined samples.

Materials and Methods 1. Samples collection: Two hundred samples of meat and meat products; minced meat, kofta, beefburger. sausage, pastirma, luncheon and hot dog (25 of each) randomly collected from were different retails in Ismailia city. Each sample was aseptically transported in ice-box to laboratory within 24 hour for bacteriological examinations.

2. Preparation of the samples:

The technique recommended by *APHA (2001)* was used for samples preparation. 25 gram of sample was aseptically added to 225 ml peptone saline and then homogenized in a stomacher for 2 min then incubated at 40°C for 24hr.

3. Isolation and biochemical identification of *E. coli:* according to *Konemann et al.*, (1993).

4. Serotyping of isolated E. coli:

The technique recommended by (*Edwards and Ewing*, 1972) was used for serotyping the isolates.

5. Molecular characterization and detection of *E. coli* virulence gene:

a- Extraction of bacterial DNA:

DNA extraction was performed using the GF-1 Tissue DNA extraction kit (**vivantis**), according to the manufacturer's instructions listed in user Guide (Version 3.1).

b- Real-Time PCR:

SYBR Green Real-time PCR was done according to (*Dafni-Maria et al. 2012*)

Primers targeting the species specific virulence gene [verotoxin1, verotoxin2 (vt1-vt2)] were synthesized by (**Biolegio**), the primers used are listed in Table (1).

Virulence gene	Primer
vt1	 * Forward Primer: vt1-F28 Sequence: 5`-ACG TTA CAG CGT GTT GCR GGG ATC-3` * Reverse Primer: vt1-R28 Sequence: 5`-TTG CCA CAG ACT GCG TCA GTR AGG-3`
vt2	 * Forward Primer: vt2-F28 Sequence: 5`-TGT GGC TGG GTT CGT TAA TAC GGC-3` * Reverse Primer: vt2-R28 Sequence: 5`-TCC GTT GTC ATG GAA ACC GTT GTC-3`

 Table (1): Oligonucleotide primers used in the PCR technique

Results

1. Results of isolation and biochemical identification of *E. coli*

Typical *E. coli* metallic sheen green colonies on Eosin Methylene Blue were subjected to several biochemical tests. It was positive for Indole, Methyle red, catalase,

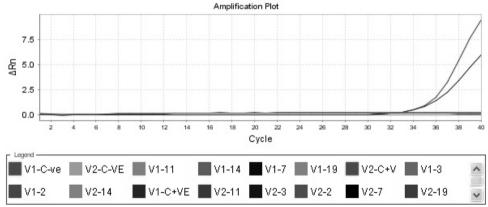
Nitrate reduction and negative for Oxidase, Voges-Proskauer, Simmon's citrate, Urease, H2S and liquefaction. Ferment gelatin lactose and glucose with acid and gas. The highest rate was from samples collected from meat (44%) followed by minced meat (28%), (20%), kofta sausage (16%), beefburger (12%) and pastirma (8%). The lowest rate was from samples collected from luncheon and hot dog (4%). The total percentage was 17% from the total samples as shown in Table (2).

2. Results of serological identification of isolated *E. coli*

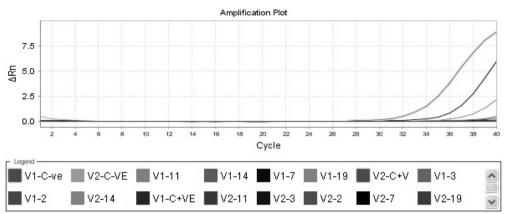
Anti-Coli I, II, III polyvalent antisera were used for serotyping of E. coli and determination of their antigenic structure. The results revealed the identification of 6 strains isolated from meat and meat products as shown in Table (3), where one strain of E. coli isolated from meat was belong to serotype O:157 K:-, one strain isolated from minced meat was belong to serotype O:91 K:-, two strains isolated from kofta and sausage were identified as O:26 K:60, one from 3 E. coli strains isolated from beefburger was serotyped as O:103 K:-. One from 2 from Е. coli strains isolated pastirma was serotyped as O:125 K:70, while one E. coli strain isolated from each luncheon and hot dog samples were untyped. On the other hand, the results demonstrated the presence of untyped strains of *E. coli* among different samples of meat and meat products according to the used Anti-Coli groups.

3. Results of molecular characterization and detection of *E. coli* virulence genes

Serolologically identified *E. coli* (six serotypes) were submitted for molecular detection and determination of verotoxin1, 2 (*vt1* – *vt2*) virulence gene by RT-PCR. Table (3) showed the positive serotypes for vt1 - vt2 gene and confirmed to be virulent *E. coli* isolates.


The result showed that one serotype (O:26 K:60 from kofta) was harbored vt1 gene Figure (1), while four serotypes (O:26 K:60 from both kofta and sausage, O:91 K:- , O:103 K:- from minced meat and were beefburger respectively) harbored vt2 gene Figure (2).Taking into account that the additional beak appeared in the two Figures represent the control positive.

Type of samples	Samples No.	E. coli isolates		
Type of samples	Sumples No.	No.	%	
Meat	25	11	44	
Minced meat	25	7	28	
Kofta	25	5	20	
Sausage	25	4	16	
Beefburger	25	3	12	
Pastirma	25	2	8	
Luncheon	25	1	4	
Hot dog	25	1	4	
Total	200	34	17	


 Table (2): Prevalence of E. coli in meat and meat products

Type of	No. of	E. coli		Virulence gene		
Type of samples	positive E. coli	Serotypes	No.	vt1	vt2	
Meat	11	Untyped	10	-	-	
		O:157 K:-	1	-	-	
Minced meat	7	Untyped	6	-	-	
		O:91 K:-	1	-	+ve	
Kofta	5	Untyped	4	-	-	
	5	O:26 K:60	1	+ve	+ve	
Sausage	4	Untyped	3	-	-	
		O:26 K:60	1	-	+ve	
Beefburger	3	Untyped	2	-	-	
		O:103 K:-	1	-	+ve	
Pastirma	2	Untyped	1	-	-	
	2	O:125 K:70	1	-	-	
Luncheon	1	Untyped	1	-	-	
Hot dog	1	Untyped	1	-	-	

Table (3): Serotyping	of the E	coli isolated	from meat a	nd meat products
Table (5). Serviyping	of the L.	con isoiaiea	jrom meai ai	na meai producis

2: meat, 3: pastirma, 7: kofta, 11: beefburger, 14: minced meat, 19: sausage **Fig** (1): The amplification plots for all samples targeting *vt*1.

2: meat, 3: pastirma, 7: kofta, 11: beefburger, 14: minced meat, 19: sausage **Fig (2):** The amplification plots for all samples targeting *vt*2.

Discussion

Meat and meat products are recognized as a major source of food-borne pathogens that cause food poisoning in humans. The infection source of is not determined in the majority of food born disease outbreaks. Currently important pathogen the most associated with meat and meat products is E. coli (Gi et al, 2009).

The present work was made in order to evaluate the role of *E. coli* among meat and meat products in Egypt, also to determine the virulence genes characteristics of *E. coli* using RT- PCR.

In the present study, a total of 200 samples of meat and meat products; minced meat, kofta, sausage, beef burger, pastirma, luncheon and hot dog, were examined for presence of *E. coli* strains. The percentage of *E. coli* was 17 % (34 isolates) as shown in Table (2). These results were agree with those obtained by (*Saleh et al, 2010*) where the percentage of *E. coli* recovered from pastirma was (8%) and from luncheon was (4%), on the other hand disagree with those obtained by (*Hanan, 1991*) who detected *E*. *coli* in pastirma, luncheon, minced meat and sausage in a percentage of (27%, 52%, 33% and 45%) respectively.

Out of 34 E. coli strains, only 6 serotyped were by using commercially available antisera as shown in Table (3). Distribution of 6 E. coli serotypes recovered from meat, minced meat, pastirma and beefburger were belonged to (O:157 K:-, O:91 K:-, O:125 K:70 and O:103 K :-) respectively, on the other hand O26:K60 serotype were isolated from both kofta and sausage. The rest of isolated strains were untypable. Similar findings have been reported by (Robert et al, 2006) who isolated E. coli O91 from ground beef, (Seran et al, 2012) isolated O:157 K:- serotype from meat, (Mohammed, 2011) isolated O:26 K:60 from kofta and (George al. 2012) who et

previously recorded O:26 K:60 from Sausage, While *E. coli* O:125 K:70 recovered from pastirma was not reported in available literature.

The difference in the rate of isolation of *E. coli* and its serotypes may attribute to difference in localities, methods of sampling and total number of samples. Also the variation in the results obtained by different investigators may be due difference in manufacturing to practices, handling and difference in time of exposure. High contamination level of E. coli in examined raw meat may indicates unsanitary conditions. They are indicators of fecal pollution at slaughterhouse which begin from skinning and direct contact with knives and workers hands. Also, during evisceration contamination may come from intestinal contents as well as from water during rinsing and washing of carcasses. Undercooked meat products have caused many food poisoning incidents associated with E. coli which is present in the feaces, intestines and hide of healthy cattle potentially from where it can during contaminate meat the slaughtering process (Duffy et al, Enterobacteriaceae were 2003). very useful as indicators of bad hygiene or bad treatment of food products and their presence in large number indicates a big possibility of the multiplication of E.coli and other pathogens (Nissen et al, *2011*).

While E. coli serotyping is an important technique for making the proper diagnosis and epidemiological investigations during food-borne outbreaks. it cannot be relied on alone for categorizing a strain of E. coli, so the identification of specific also virulence genes must be performed (Barlow et al, 1999). PCR is a powerful molecular biology technique for the detection of virulence genes. It is not only highly sensitive and specific, but it also provides rapid and reliable results. It can help to distinguish E. coli isolates from meat and meat through detection of products virulence genes (Kimata et al. 2005). Verotoxins (vt1 and vt2) are thought to play a prominent role in pathogenesis the of Е. coli infections (O'Brien et al. 1992) that is a frequent cause of severe human diseases including bloody diarrhea and hemolytic uremic syndrome (HUS) (Manning et al, 2007)

In this study, using of SYBR Green RT- PCR for identification of tested *E. coli* strains was highly specific with the primers chosen for the detection of *vt1* and *vt2* virulence genes. Results for the molecular characterization of six serotyped strains of *E. coli* showed that *E. coli* O:26 K:60 serotype isolated from kofta was harbored both *vt*1and *vt2*, while O:26 K:60, O:103 K:- and O:91 K:- serotypes isolated from (sausage, beef burger and minced meat) respectively, were harbored *vt2* gene only Table (3), Figures (1)

and (2). These results agreed with (*Bhong et al, 2008*) who detected *vt1* and *vt2* in *E. coli* serotype by using SYBR Green RT- PCR.

The variation in the presence of virulence encoding genes among different serotypes isolated from different sources revealed that the mechanisms pathogenesis of depends mainly on the presence of different virulence factors not to the different serotypes. (Aranda et al, 2004), The qualitative Real-Time PCR assay was rapid, sensitive and used as an alternative method to conventional methods for studying vt1 and vt2 virulence genes expression in E. coli (Fitzmaurice et al, 2004).

Conclusion

• The raw meat and meat products samples were found to be contaminated with *E. coli*.

In addition to the conventional methods used for isolation and identification of E. coli, PCR is required as rapid, accurate and specific for tool detection of pathogenic Е. coli and their virulence genes.

• Application of good hygiene practices (GHP) during meat processing is essential to control the hazards of *E. coli* food poisoning.

References

Ahmed, A. M. and Ismail, T.H. (2010): Improvement of the quality and shelf-life of minced beef mixed with soyprotien by Sage (Saliva *officinalis*). African Journal of Food Science, 4: 330-334.

"APHA" American Public Health Association (2001): Compendium of Methods for the Microbiological Examination of Foods, 4th Edition. APHA, Washington, DC.

Aranda, K. R. S.; Fagundes-Neto, U. and Scaletsky, I. C. A. (2004): Evaluation of multiplex PCRs for diagnosis of infection with diarrheagenic *Escherichia coli* and *Shigella* spp. Journal of Clinical Microbiology, 42: 5849-5853.

Barlow, R. S.; Hirst, R. G.; Norton, R. E.; Asshhurst-Smith, C. and Bettelheim, K. A. (1999): Novel serotype of enteropathogenic *Escherichia coli* (EPEC) as a major pathogen in an outbreak of infantile diarrhoea. Journal of Medical Microbiology, 48: 1123-1125.

Bhong, C. D.; Brahmbhatt, M. N.; Joshi, C. G. and Rank, D. N. (2008): Detection of virulence determinants by real time PCR in *E. coli* isolated from mutton. Meat Sci., 80 (4): 1129-31.

Biesalski, H. K. (2005): Meat as a component of a healthy diet. Are there any risks or benefits if meat is avoided in the diet. Meat Science; 70: 509-524.

Chen, H. D. and Frankel, G. (2005): Enteropathogenic Escherichia coli: unravelling pathogenesis. FEMS Microbiol Rev 29: 83-98.

Dafni-Maria, K.; Silvia, F.; Elodie, B.; Guy, V. and Marc, V. (2012): Towards a Pathogenic Escherichia coli detection platform using multiplex SYBR ® green real-time PCR methods and high resolution melting analysis. Plos. 7(6): 39287. Duffy. *G*.: Cagney, H. and Sheridan, J. **J**. (2003): Α Nationwide Surveillance Study on E. coli O157:H7 and Enterobacteriaceae in Irish frozen Beef Products. J. Assoc. Anal. Cham, 59: 67-80.

Edwards, P. R. and Ewing, W. H. (1972): Identification of Enterobacteriaceae. Emerg. Infect. Dis. 12: 154–159.

Fitzmaurice, J.; Glennon, M.; Duffy, G.; Sheridan, J. J.; Carroll, С. and Maher. М. (2004): Application of real-time PCR and **RT-PCR** assays for the detectionand quantitation of VT 1 and VT 2 toxin in *E*. coli O157:H7. genes Molecular and Cellular Probes 18: 123-132.

Fratmico, P. M.; Bhunia, A. K. and Smith, J. L. (2005): Foodborne Pathogens in Microbiology and Molecular Biology, Caister Academic Press, Wymondham, Norfolk, UK, 273.

George, C.; Celia, H. and Arno, H. (2012): The incidence of diarrhoeagenic *Escherichia coli* in minced beef and boerewors. Food Research International 47(2): 353– 358.

Gi, *Y. L.; Hye, I. J.; In, G. H.; Min, S. R.; (2009):* Prevalence and classification of pathogenic *Escherichia coli* isolated from fresh beef, poultry, and pork in Korea. International Journal of Food Microbiology, 134(3): 196–200. Hanan, I. I. G. (1991): Indicator organisms in some meat products. M.V. Sc. Thesis, Faculty of Veterinary Medicine. Alexandria University.

Kaper, J. B.; Nataro, J. P. and Mobley, H. L. (2004): Pathogenic Escherichia coli. Nature Rev., 2: 123-140.

Kimata, K.; Shima, T.; Shimizu, M.; Tanaka, D.; Isobe, J.; Gyobu, Y.; et al (2005): Rapid categorization of pathogenic Escherichia coli by multiplex PCR. Microbiology and Immunology, 49: 485-492.

Klein, D. (2009): Quantification using real-time PCR technology applications and limitations. Trends in Molecular Medicine, 8: 257-60.

Konemann, E. W.; Allen, S. D.; Dowell, V. R. and Sommers, H. M. (1993): In color atlas and textbook of diagnostic microbiology. 4th Ed., J. B. Lippincott Co., New York.

Manning, S. D.; Madera, R. T.; Schneider, W.; Dietrich, S. E.; Khalife, W.; Brown, W.; Whittam, T. S.; Somsel, P.; Rudrik, J. T. (2007): Surveillance for Shiga toxin-producing Escherichia coli. Emerg. Infect. Dis., 13: 318–321.

Michael, P. D. (1991): Escherichia coli 0157: H7 and its significance in foods. International Journal of Food Microbiology, 12(4): 289–301.

Mohammed, *F. A. (2011):* The incidence of Enterobacteriaceae causing food poisoning in some Meat Products. Advance Journal of

Food Science and Technology 3(2): 116-121.

Nissen, H.; Maugesten, T. and Lea, P. (2001): Survival and growth of Escherichia coli O157:H7, Yersinia enterocolitica and Salmonella enteritidis on decontaminated and untreated meat. Meat Science, 57:291-298.

O'Brien, A. D.; Tesh, V. L.; Donohue-Rolfe, A.; Jackson, M. P.; Olsnes, S.; Sandvig, K.; Lindberg, A. A. and Keusch, G. T. (1992): Shiga toxin: biochemistry, genetics, mode of action, and role in pathogenesis. Curr. Top. Microbiol. Immunol., 180: 65–94.

Robert, S. B.; Kari, S. G. and Patricia, M. D. (2006): Shiga toxinproducing Escherichia coli in ground beef and lamb cuts: Results of a one-year study. International Journal of Food Microbiology 111: 1-5. Sack. *R*. **B**. (1975): Human disease diarrheal caused bv enterotoxigenic Escherichia coli. Annu. Rev. Microbiol., 29:333-353. Saleh, E. A.; Ali, H. A. and Abu-Khadra, A. M. (2010): Detection of some food poisoning microorganisms in some meat products. Alexandria Journal of Veterinary Sciences, 31(1): 27-33.

Selvan, P.; NarendraBabu, R.; Sureshkumar, S. and Venkataramanujam, V. (2007): Microbial quality of retail meat products available in Chennai City. American Journal of Food Technology, 2: 55-59.

Seran, T.; Ayşegül, E. and Şahsene, A. (2012): Prevalence of Escherichia coli O157 in red meat and meat products determined by VIDAS ECPT and Light Cycler PCR. Turk. J. Vet. Anim. Sci., 36(3): 305-310.

الملخص العربي " التوصيف الجزيئي للايشيريشيا القولونيه الممرضه المعزوله من اللحوم و منتجاتها"

محمود عزت السيد، إيمان ابر اهيم ثابت، جيهان محمد عمر محمد*، مروه عبد الحق محمود* قسم البكتريولوجي و المناعه و الفطريات - كلية الطب البيطري- جامعة قناة السويس * قسم البكتيريولوجي - معهد بحوث صحة الحيوان - فرع بور سعيد

استهدفت هذه الدراسة إلقاء الضوء على مدي تواجد ميكروب الايشيريشيا كولاي في اللحوم و بعض منتجاتها وتحديد جين الضراوه بها والذي قد يمثل تهديدا لسلامة الاغذيه لذلك تم فحص عدد درمج] (٢٠ عينه من اللحم و منتجاته [لحم مفروم ، كفته ، سجق ، بيف برجر ، بسطرمه ، لانشون ، هوت دوج] (٢٥ عينه من كل منها) تم تجميعهم عشوائيا من السوبر ماركت و محلات الجزاره و الباعه الجائلين في محافظة الاسماعيليه و أظهرت نتائج الفحص البكتريولوجي والتعريف البيوكيميائي أن عدد ٣٤ عينه (١٧%) كانت موجبه لميكروب الايشيريشيا كولاي، كما أوضحت نتائج التصنيف السيرولوجي لميكروب الايشيريشيا كولاي المعزول من عينات اللحم و اللحم المفروم و البيف برجر و البسطرمه أن عترات الايشيريشيا كولاي كانت تنتمي الى مجموعات -: N 0:157 ، -: N 19 ، -: N 0:103 K:70 ، 0:105 على التوالي، بينما كانت السلالات المعزوله من الكفته و السجق تنتمى الى مجموعة 0:26 K:60 . بالاضافه الى سلالات لم يتم تصنيفها سيرولوجيا باستخدام المجموعات السيرولوجيه O:26 K:60 . و باستخدام اختبار تفاعل انزيم البلمرة المتسلسل في المجموعات السيرولوجيه Anti-Coli I, II, III . و باستخدام اختبار تفاعل انزيم البلمرة المتسلسل ذو الوقت الحقيقى لتحديد جينات الضرواه vt1 , vt2 ، أسفرت النتائج ان ميكروب الايشيريشيا كولاي (0:26 K:60) المعزوله من الكفته أظهر تحديد جينات الضرواه vt1 , معزوله من البيف برجر بالمعزوله من البلمرة المتسلول و O:26 K:60 . و باستخدام اختبار تفاعل انزيم البلمرة المتسلسل في الوقت الحقيقى لتحديد جينات الضرواه vt1 , vt2 ، أسفرت النتائج ان ميكروب الايشيريشيا كولاي (0:26 K:60) المعزوله من البيف برجر و اللحم المغروم كانت تحتوي على جين الضراوه vt2 فقط.